1.1
The techniques described in this guide apply to electrical circuits that include one or more electrical contacts in devices such as slip rings, separable connectors, electromechanical relays or closed switch contacts. The user should determine applicability for other devices.
1.2
The range of techniques described apply to circuit discontinuities (intermittences) of durations ranging from approximately 10 nanoseconds to several seconds and of sufficient magnitude to cause alteration of the circuit function. Extension of the guide to shorter duration events may be possible with suitable instrumentation. Events of longer duration may be monitored by techniques for dc measurements such as those described in Test Methods
B539
or by adaptation of methods described in this guide.
1.3
The techniques described in this guide apply to electrical circuits carrying currents typical of signal circuits. Such currents are generally less than 100 ma. Extension of these techniques to circuits carrying larger currents may be possible, but the user should evaluate applicability first.
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
This guide suggests techniques to evaluate intermittences in a contact pair while it is subjected to simulated or actual environmental stress. Such measurements are a valuable tool in predicting circuit performance under these stress conditions and in diagnosing observed problems in circuit function under such conditions.
4.2
This document is intended to provide some general guidance on the best available practices for detecting, quantifying, characterizing and reporting short duration intermittences in circuits containing electrical contacts. Certain environmental stresses such as mechanical shock, vibration or temperature change may cause intermittences. These measurement procedures include methods applicable to contacts operating under various conditions in testing or in service.
4.3
Practice
B615
defines methods for measuring electrical contact noise in sliding electrical contacts. In contrast Guide
B854
provides guidance to the various methods for measuring similar phenomena in static contacts.