首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D4404-18
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry 用汞侵入孔隙率测定法测定土壤和岩石的孔隙体积和孔隙体积分布的标准试验方法
发布日期: 2018-02-01
1.1 本试验方法包括通过压汞孔隙测定法测定土壤和岩石的孔隙体积和孔隙体积分布。本试验方法适用的孔隙视直径范围由试验仪器的工作压力范围确定。该范围通常在约400μm和2.5 nm(0.0025μm)的表观孔径之间。较大的孔隙必须用另一种方法测量。 1.2 汞侵入孔隙测定法仅适用于测量土壤或岩石碎片外部的孔隙;汞侵入孔隙测定法不会给出被周围固体完全包围的任何孔隙的体积。该测试方法将仅给出表观直径对应于测试仪器加压范围内压力的可侵入孔隙的体积。 1.3 汞侵入可能涉及对试样施加高压。 这可能导致孔隙几何形状发生临时或永久性变化,或两者兼而有之。通常,土壤和岩石由相对坚固的固体组成,与某些其他材料相比,受这些变化的影响较小。然而,使用该试验方法可能会改变正在测量的天然孔隙体积分布。 1.4 警告- 环保局和许多国家机构已将汞指定为一种有害物质,可导致中枢神经系统、肾脏和肝脏损害。汞或其蒸汽可能对健康有害,并对材料具有腐蚀性。处理汞和含汞产品时应小心。有关详细信息,请参阅适用的产品材料安全数据表(MSDS)和EPA网站(http://www.epa.gov/mercury/faq.htm)了解更多信息。用户应意识到,州法律可能禁止向您所在州销售汞或含汞产品或两者兼而有之。 1.5 单位- 以国际单位制表示的数值应视为标准值。本标准不包括其他计量单位。以国际单位制以外的单位(如cgs)报告试验结果不应视为不符合本试验方法。 1.6 所有观察值和计算值应符合实践中确定的有效数字和舍入准则 D6026 . 1.6.1 本标准中用于规定如何收集/记录和计算数据的程序被视为行业标准。此外,它们代表了通常应保留的有效数字。使用的程序不考虑材料变化、获取数据的目的、特殊目的研究或用户目标的任何考虑因素;通常的做法是增加或减少报告数据的有效位数,以与这些考虑因素相称。 考虑工程数据分析方法中使用的有效数字超出了这些测试方法的范围。 1.7 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 有关具体预防说明,请参阅第节 8. . 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本试验方法旨在确定土壤和岩石中孔隙的体积和体积分布,与孔隙入口的表观直径有关。 一般来说,孔隙的大小和体积都会影响土壤和岩石的性能。因此,孔隙体积分布有助于理解土壤和岩石的性能,并有助于识别可预期以特定方式表现的材料 ( 1. , 2. ) . 3. 5.2 确定孔隙体积的侵入过程从试样外部向其中心进行。相对较大的内部孔隙可能存在,外部开口较小,是进入的唯一途径。压汞法将错误地将这些“墨水瓶”孔的整个体积记录为具有较小接入孔的表观直径。在试样中,除了试样内部孔隙外,还可以存在试样外部孔隙(参见 3.2 定义)。碎片间孔隙的大小和体积将因土壤或岩石碎片的大小和形状以及碎片的堆积方式而异。 一些外部样品孔可能与一些内部样品孔具有相同的表观直径。出现这种情况时,本试验方法无法区分它们。因此,试验方法产生侵入孔隙体积分布,该分布部分取决于多碎片试样的包装。然而,大多数土壤和岩石的碎块内孔隙比碎块间孔隙小得多。这种情况会导致双峰孔径分布,然后可以区分这两类孔隙(参见 无花果。1和 2. ). intr碎片孔隙浓度显示在图的左侧;片段间浓度在右侧。 图1 累积孔隙体积分布图示例 图2 差异孔隙体积分布图示例 注1: 本标准产生的结果的质量取决于执行该标准的人员的能力,以及所用设备和设施的适用性。 符合实践标准的机构 D3740 通常认为能够胜任和客观的测试/采样/检查等。本标准的用户应注意遵守惯例 D3740 本身并不能保证可靠的结果。可靠的结果取决于许多因素;实践 D3740 提供了一种评估其中一些因素的方法。
1.1 This test method covers the determination of the pore volume and the pore volume distributions of soil and rock by the mercury intrusion porosimetry method. The range of apparent diameters of pores for which this test method is applicable is fixed by the operating pressure range of the testing instrument. This range is typically between apparent pore entrance diameters of about 400 μm and 2.5 nm (0.0025 μm). Larger pores must be measured by another method. 1.2 Mercury intrusion porosimetry is useful only for measuring pores open to the outside of a soil or rock fragment; mercury intrusion porosimetry will not give the volume of any pores completely enclosed by surrounding solids. This test method will give only the volume of intrudable pores that have an apparent diameter corresponding to a pressure within the pressurizing range of the testing instrument. 1.3 Mercury intrusion may involve the application of high pressures to the specimen. This may result in a temporary or permanent alteration or both in the pore geometry. Generally, soils and rocks are composed of comparatively strong solids and are less subject to these alterations than certain other materials. However, the possibility remains that the use of this test method may alter the natural pore volume distribution that is being measured. 1.4 Warning— Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products or both into your state may be prohibited by state law. 1.5 Units— The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI, such as cgs, shall not be regarded as nonconformance with this test method. 1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 . 1.6.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements, see Section 8 . 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This test method is intended for use in determining the volume and the volume distribution of pores in soil and rock with respect to the apparent diameter of the entrances of the pores. In general, both the size and volume of the pores affects the performance of soil and rock. Thus, the pore volume distribution is useful in understanding soil and rock performance and in identifying a material that can be expected to perform in a particular manner ( 1 , 2 ) . 3 5.2 The intrusion process to determine the volume of a pore proceeds from the outside of a specimen toward its center. Comparatively large interior pores can exist that have smaller outside openings as the only means of access. Mercury intrusion porosimetry will incorrectly register the entire volume of these “ink-bottle” pores as having the apparent diameter of the smaller access pores. In a test specimen, exterior specimen pores can exist in addition to intra-specimen pores (see 3.2 for definitions). The inter-fragment pores will vary in size and volume depending on the size and shape of the soil or rock fragments and on the manner in which the fragments are packed together. It is possible that some exterior specimen pores can have the same apparent diameter as some intra-specimen pores. When this occurs, this test method cannot distinguish between them. Thus, the test method yields an intruded pore volume distribution that is in part dependent upon the packing of multifragment specimens. However, most soils and rocks have intra-fragment pores much smaller than the inter-fragment pores. This situation leads to a bi-modal pore size distribution and the distinction between the two classes of pores can then be made (see Figs. 1 and 2 ). The intr-fragment pore concentration is shown to the left of the plot; the inter-fragment concentration is to the right. FIG. 1 Example of Cumulative Pore Volume Distribution Plot FIG. 2 Example of Differential Pore Volume Distribution Plot Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
分类信息
关联关系
研制信息
归口单位: D18.06
相似标准/计划/法规
现行
ASTM D6761-22a
Standard Test Method for Determination of the Total Pore Volume of Catalysts and Catalyst Carriers
测定催化剂和催化剂载体总孔体积的标准试验方法
2022-08-01
现行
DIN 19683-13
Soil quality - Physical laboratory tests - Part 13: Determination of soil volume percentage, total pore volume and pore number of mineral soils
土壤质量物理实验室试验第13部分:矿物土壤的土壤体积百分比、总孔隙体积和孔隙数的测定
2007-07-01
现行
GOST 17219-1971
Угли активные. Метод определения суммарного объема пор по воде
活性炭 通过水分容量试验测定总孔容积的方法
现行
ASTM D4284-12(2017)e1
Standard Test Method for Determining Pore Volume Distribution of Catalysts and Catalyst Carriers by Mercury Intrusion Porosimetry
通过汞侵入法测定催化剂和催化剂载体的孔体积分布的标准测试方法
2017-02-01
现行
ASTM D8393-21
Standard Guide for Determination of Pore Volume of Powdered Catalysts and Catalyst Carriers by Water Adsorption
用水吸附法测定粉末催化剂和催化剂载体孔体积的标准指南
2021-06-01
现行
GB/T 7702.20-2008
煤质颗粒活性炭试验方法 孔容积 比表面积的测定
Test method for granular activated carbon from coal - Determination of pore volume and specific surface area
2008-11-20
现行
YS/T 1161.3-2016
拟薄水铝石分析方法 第3部分:孔容和比表面积的测定 氮吸附法
Chemical analysis methods of pseudoboehmite—Part 3:Determination of pore volume and specific surface area—Bynitrogen adsorption
2016-07-11
现行
ASTM D8490-23a
Standard Test Method for Determining the Pore Size Characteristics of Geotextiles Using an Optical Method
用光学方法测定土工织物孔径特性的标准试验方法
2023-06-15
现行
ASTM D4542-22
Standard Test Methods for Pore Water Extraction and Determination of the Soluble Salt Content of Soils by Refractometer
用折射计测定土壤中可溶性盐含量和孔隙水提取的标准试验方法
2022-08-01
现行
NB/SH/T 0588-2013
石油蜡体积收缩率测定法
Standard test method for determining the volume contraction of petroleum waxes
2013-06-08
现行
NB/SH/T 0571-2021
催化剂中沸石比表面积和微孔体积测定法
Standard test method for determining micropore volume and zeolite area of a catalyst
2021-11-16
现行
ASTM D4365-25
Standard Test Method for Determining Micropore Volume and Zeolite Area of a Catalyst
用于测定催化剂的微孔体积和沸石面积的标准测试方法
2025-02-01
现行
ASTM E562-19e1
Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count
用系统手动点计数法测定体积分数的标准试验方法
2019-08-15
现行
ASTM D4096-17(2023)
Standard Test Method for Determination of Total Suspended Particulate Matter in the Atmosphere (High–Volume Sampler Method)
大气中总悬浮颗粒物测定的标准试验方法(大容量取样器法)
2023-11-01
现行
NB/SH/T 0883-2014
柴油着火滞后期和导出十六烷值的测定 等容燃烧室法
Standard test method for determination of ignition delay and derived cetane number of diesel fuel oil by combustion in a constant volume chamber
2014-06-29
现行
ASTM D7363-13A(2021)e1
Standard Test Method for Determination of Parent and Alkyl Polycyclic Aromatics in Sediment Pore Water Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry in Selected Ion Monitoring Mode
在选定离子监测模式下用固相微萃取和气相色谱/质谱法测定沉积物孔隙水中母体和烷基多环芳烃的标准试验方法
2021-11-01
现行
ASTM D6890-22
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
在定容室中燃烧测定柴油燃料油点火延迟和衍生十六烷值(DCN)的标准试验方法
2022-11-15
现行
ASTM D6172/D6172M-18
Standard Test Method for Determining the Volume of Bulk Materials Using Contours or Cross Sections Created by Direct Operator Compilation Using Photogrammetric Procedures
用摄影测量程序由操作员直接编译而成的等高线或横截面测定散装材料体积的标准试验方法
2018-12-01
现行
ASTM D8183-22
Standard Test Method for Determination of Indicated Cetane Number (ICN) of Diesel Fuel Oils using a Constant Volume Combustion Chamber—Reference Fuels Calibration Method
使用定容燃烧室参考燃料校准方法测定柴油指示十六烷值(ICN)的标准试验方法
2022-07-01
现行
NB/SH/T 6035-2021
柴油导出十六烷值的测定 定容燃烧室着火滞后和燃烧滞后法
Standard test method for determination of derived cetane number (DCN) of diesel fuel oils—Ignition delay and combustion delay using a constant volume combustion chamber method
2021-11-16