首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E521-23
到馆提醒
收藏跟踪
购买正版
Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation 用带电粒子辐射研究中子辐射损伤影响的标准实施规程
发布日期: 2023-06-01
1.1 尽管许多方法也可以应用于陶瓷材料,但该实践为金属和合金的带电粒子辐照提供了指导。它通常局限于对样品中静止的低穿透力离子引起的微观结构和微化学变化的研究。密度变化可以直接测量,其他特性的变化也可以推断。这些信息可以用来估计中子辐射可能导致的类似变化。更普遍地说,这些信息在推断各种材料和辐照条件下辐射损伤的基本机制方面具有价值。 1.2 在出现“模拟”一词的地方,应将其理解为为了阐明损伤机制,对相关中子辐照环境的近似。一致性的程度可以从差到几乎准确不等。 其目的是在中子和带电粒子辐照的一个或多个方面之间产生对应关系,从而在辐照或材料参数与材料响应之间建立基本关系。 1.3 做法如下: 部分 仪器 4. 试样制备 5– 10 辐照技术(包括氦气注入) 11 —— 12 损坏计算 13 辐照后检查 14– 16 结果报告 17 相关性与解释 18– 22 1.4 以国际单位制表示的数值应视为标准。本标准中不包括其他计量单位。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 4.1 带电粒子辐照实验的一个特征优势是对大多数重要的辐照条件(如剂量、剂量率、温度和存在的气体量)进行精确、单独的控制。额外的属性是样品缺乏诱导的放射性活化,并且通常将辐照时间从几年压缩到几小时,以实现以每原子位移(dpa)测量的可比损伤。这种实验的一个重要应用是研究暴露在目前不存在的环境中的材料中可能发生的辐射效应,例如在聚变反应堆中使用的第一壁材料中。 4.2 离子轰击的主要缺点源于损伤率,或复杂合金中微观结构演化过程的温度依赖性,或两者兼而有之。不能假设通过增加位移率,即使在辐射温度发生相应变化的情况下,也可以对所有过程的损伤演化时间尺度进行比较压缩。此外,损伤产生仅限于薄层(通常 ~ 1μm)可引起严重的并发症。因此,必须强调的是,这些实验和实践是为了研究目的,而不是为了材料的认证或鉴定。 4.3 该实践涉及使用带电粒子在金属和合金的微观结构中产生辐照引起的变化。使用带电粒子对机械行为的研究包含在实践中 电子821 。
1.1 This practice provides guidance on performing charged-particle irradiations of metals and alloys, although many of the methods may also be applied to ceramic materials. It is generally confined to studies of microstructural and microchemical changes induced by ions of low-penetrating power that come to rest in the specimen. Density changes can be measured directly and changes in other properties can be inferred. This information can be used to estimate similar changes that would result from neutron irradiation. More generally, this information is of value in deducing the fundamental mechanisms of radiation damage for a wide range of materials and irradiation conditions. 1.2 Where it appears, the word “simulation” should be understood to imply an approximation of the relevant neutron irradiation environment for the purpose of elucidating damage mechanisms. The degree of conformity can range from poor to nearly exact. The intent is to produce a correspondence between one or more aspects of the neutron and charged-particle irradiations such that fundamental relationships are established between irradiation or material parameters and the material response. 1.3 The practice appears as follows: Section Apparatus 4 Specimen Preparation 5 – 10 Irradiation Techniques (including Helium Injection) 11 – 12 Damage Calculations 13 Postirradiation Examination 14 – 16 Reporting of Results 17 Correlation and Interpretation 18 – 22 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 A characteristic advantage of charged-particle irradiation experiments is the precise, individual control over most of the important irradiation conditions such as dose, dose rate, temperature, and quantity of gases present. Additional attributes are the lack of induced radioactivation of specimens and, in general, a substantial compression of irradiation time, from years to hours, to achieve comparable damage as measured in displacements per atom (dpa). An important application of such experiments is the investigation of radiation effects that may occur in materials exposed to environments which do not currently exist, such as in first wall materials used in fusion reactors. 4.2 The primary shortcoming of ion bombardments stems from the damage rate, or temperature dependences of the microstructural evolutionary processes in complex alloys, or both. It cannot be assumed that the time scale for damage evolution can be comparably compressed for all processes by increasing the displacement rate, even with a corresponding shift in irradiation temperature. In addition, the confinement of damage production to a thin layer just (often ∼ 1 μm) below the irradiated surface can present substantial complications. It must be emphasized, therefore, that these experiments and this practice are intended for research purposes and not for the certification or the qualification of materials. 4.3 This practice relates to the generation of irradiation-induced changes in the microstructure of metals and alloys using charged particles. The investigation of mechanical behavior using charged particles is covered in Practice E821 .
分类信息
关联关系
研制信息
归口单位: E10.05
相似标准/计划/法规