1.1
本试验方法测定了连续纤维增强高级陶瓷复合管在环境温度下单调加载下的轴向拉伸强度和应力应变响应。该试验方法针对管道几何形状,因为与平板相比,复合管中的纤维结构和试样几何形状因素通常明显不同。
1.2
在试验方法中,将具有规定量规截面和已知壁厚的复合管/圆柱体安装/粘接到加载夹具中。
将试样/夹具组件安装在试验机中,并在环境温度下以单轴拉伸方式单调加载,同时记录规截面中的拉力和应变。轴向拉伸强度和断裂强度由最大施加力和断裂力确定。应变、比例极限应力和拉伸弹性模量由应力-应变数据确定。
1.3
本试验方法主要适用于具有连续纤维增强的高级陶瓷基复合管:
单向(1D,纤维缠绕和胶带缠绕)、双向(2D,织物/胶带缠绕和编织)和三向(3D,编织和编织)。这些类型的陶瓷基复合材料由多种晶体和非晶陶瓷基成分(氧化物、碳化物、氮化物、碳、石墨和其他成分)中的多种陶瓷纤维组成。
1.4
本试验方法不直接涉及不连续纤维增强晶须-
增强或颗粒增强陶瓷,尽管此处详述的测试方法可能同样适用于这些复合材料。
1.5
该试验方法描述了一系列基于陶瓷复合管过去拉伸试验的试样管几何形状。这些几何形状适用于外径为10至150 mm、壁厚为1至25 mm的管道,其中外径与壁厚之比(
d
O
/t
)通常在5到30之间。
1.5.1
本试验方法适用于环境温度试验。
高温测试需要配备温度控制和测量系统的高温炉和加热装置,以及能够承受温度的夹具和加载夹具,本测试方法中未涉及这些。
1.6
本试验方法在以下章节中阐述了试验设备、夹持方法、试验模式、允许弯曲应力、干扰、管状试样几何形状、试样制备、试验程序、数据收集、计算、报告要求和精度/偏差。
部分
范围
1.
参考文件
2.
术语
3.
试验方法总结
4.
意义和用途
5.
干扰
6.
仪器
7.
危害
8.
试样
9
试验程序
10
计算结果
11
汇报
12
精度和偏差
13
关键词
14
附件
干扰
附件A1
试样几何形状
附件A2
夹具和载重列车耦合器
附件A3
允许弯曲和负载序列对齐
附件A4
测试模式和速率
附件A5
1.7
单位-
以国际单位制表示的数值应视为标准值。
1.8
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
第节给出了具体的预防说明
8.
.
1.9
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
5.1
本试验方法提供了有关陶瓷复合管的单轴拉伸性能和拉伸应力-应变响应的信息拉伸强度和应变、断裂强度和应变、比例极限应力和应变、拉伸弹性模量等。这些信息可用于材料开发、材料比较、质量保证、表征、,并设计数据生成。
5.2
连续纤维增强陶瓷复合材料(CFCC)由连续陶瓷组成-
细晶粒(<50)中的纤维定向(1D、2D和3D)增强 µm)具有受控孔隙度的陶瓷基质。这些复合材料通常具有工程薄(0.1至10 µm)纤维上的界面涂层,以产生裂纹偏转和纤维拔出。这些陶瓷复合材料具有高温稳定性、固有损伤容限、高耐磨性和耐腐蚀性。因此,这些陶瓷复合材料特别适用于航空航天和高温结构应用
(
1.
,
2.
)
.
3.
5.3
CFCC组件具有材料特性、界面涂层、孔隙率控制、复合结构(1D、2D和3D)和几何形状的独特协同组合,这些通常是不可分割的。通过将CFCC平板的测量特性应用于管的设计,无法预测CFCC管(尤其是具有编织和3D编织结构)的机械性能。需要对CFCC管进行直接单轴抗拉强度试验,以提供有关管几何形状的机械行为和强度的可靠信息。
5.4
CFCC通常会经历累积损伤过程中的“优雅”断裂,而不象单片高级陶瓷那样会因单个主要缺陷而发生灾难性断裂。CFCC的拉伸行为和强度取决于其固有的断裂阻力、缺陷的存在和任何损伤累积过程。这些因素受复合材料成分和材料和测试组件的可变性、增强结构和体积分数、孔隙度含量、基质形态、界面形态、材料制造方法、试样制备和调节以及表面条件的影响。
5.5
从特定材料或零件的选定部分或两者中按标准尺寸制造的试样的拉伸试验结果可能不能完全代表整个全尺寸最终产品的强度和变形特性或其在不同环境中的使用行为。
5.6
出于质量控制目的,考虑到主要加工条件和后处理,标准化管状拉伸试样的结果可被视为指示材料的响应-
加工热处理。
1.1
This test method determines the axial tensile strength and stress-strain response of continuous fiber-reinforced advanced ceramic composite tubes at ambient temperature under monotonic loading. This test method is specific to tube geometries, because fiber architecture and specimen geometry factors are often distinctly different in composite tubes, as compared to flat plates.
1.2
In the test method a composite tube/cylinder with a defined gage section and a known wall thickness is fitted/bonded into a loading fixture. The test specimen/fixture assembly is mounted in the testing machine and monotonically loaded in uniaxial tension at ambient temperature while recording the tensile force and the strain in the gage section. The axial tensile strength and the fracture strength are determined from the maximum applied force and the fracture force. The strains, the proportional limit stress, and the tensile modulus of elasticity are determined from the stress-strain data.
1.3
This test method applies primarily to advanced ceramic matrix composite tubes with continuous fiber reinforcement: unidirectional (1D, filament wound and tape lay-up), bidirectional (2D, fabric/tape lay-up and weave), and tridirectional (3D, braid and weave). These types of ceramic matrix composites are composed of a wide range of ceramic fibers (oxide, graphite, carbide, nitride, and other compositions) in a wide range of crystalline and amorphous ceramic matrix compositions (oxide, carbide, nitride, carbon, graphite, and other compositions).
1.4
This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.
1.5
The test method describes a range of test specimen tube geometries based on past tensile testing of ceramic composite tubes. These geometries are applicable to tubes with outer diameters of 10 to 150 mm and wall thicknesses of 1 to 25 mm, where the ratio of the outer diameter-to-wall thickness (
d
O
/t
) is typically between 5 and 30.
1.5.1
This test method is specific to ambient temperature testing. Elevated temperature testing requires high-temperature furnaces and heating devices with temperature control and measurement systems and temperature-capable grips and loading fixtures, which are not addressed in this test method.
1.6
The test method addresses test equipment, gripping methods, testing modes, allowable bending stresses, interferences, tubular test specimen geometries, test specimen preparation, test procedures, data collection, calculation, reporting requirements, and precision/bias in the following sections.
Section
Scope
1
Referenced Documents
2
Terminology
3
Summary of Test Method
4
Significance and Use
5
Interferences
6
Apparatus
7
Hazards
8
Test Specimens
9
Test Procedure
10
Calculation of Results
11
Report
12
Precision and Bias
13
Keywords
14
Annexes
Interferences
Annex A1
Test Specimen Geometry
Annex A2
Grip Fixtures and Load Train Couplers
Annex A3
Allowable Bending and Load Train Alignment
Annex A4
Test Modes and Rates
Annex A5
1.7
Units—
The values stated in SI units are to be regarded as standard.
1.8
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
Specific precautionary statements are given in Section
8
.
1.9
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
This test method provides information on the uniaxial tensile properties and tensile stress-strain response of a ceramic composite tube—tensile strength and strain, fracture strength and strain, proportional limit stress and strain, tensile elastic modulus, etc. The information may be used for material development, material comparison, quality assurance, characterization, and design data generation.
5.2
Continuous fiber-reinforced ceramic composites (CFCCs) are composed of continuous ceramic-fiber directional (1D, 2D, and 3D) reinforcements in a fine-grain-sized (<50 µm) ceramic matrix with controlled porosity. Often these composites have an engineered thin (0.1 to 10 µm) interface coating on the fibers to produce crack deflection and fiber pull-out. These ceramic composites offer high-temperature stability, inherent damage tolerance, and high degrees of wear and corrosion resistance. As such, these ceramic composites are particularly suited for aerospace and high-temperature structural applications
(
1
,
2
)
.
3
5.3
CFCC components have a distinctive and synergistic combination of material properties, interface coatings, porosity control, composite architecture (1D, 2D, and 3D), and geometric shape that are generally inseparable. Prediction of the mechanical performance of CFCC tubes (particularly with braid and 3D weave architectures) cannot be made by applying measured properties from flat CFCC plates to the design of tubes. Direct uniaxial tensile strength tests of CFCC tubes are needed to provide reliable information on the mechanical behavior and strength of tube geometries.
5.4
CFCCs generally experience “graceful” fracture from a cumulative damage process, unlike monolithic advanced ceramics which fracture catastrophically from a single dominant flaw. The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, and any damage accumulation processes. These factors are affected by the composite material composition and variability in material and testing—components, reinforcement architecture and volume fraction, porosity content, matrix morphology, interface morphology, methods of material fabrication, test specimen preparation and conditioning, and surface condition.
5.5
The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments.
5.6
For quality control purposes, results derived from standardized tubular tensile test specimens may be considered indicative of the response of the material from which they were taken, given primary processing conditions and post-processing heat treatments.