首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM C1275-18(2025)
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature 连续纤维增强先进陶瓷的单调拉伸行为的标准测试方法与实际长方形横截面试样在环境温度
发布日期: 2025-01-01
1.1 本试验方法涵盖了连续纤维增强高级陶瓷在环境温度下单调单轴加载下的拉伸行为的测定,包括拉伸强度和应力-应变响应。本试验方法涉及但不限于附录中列出的各种建议的试样几何形状。此外,还讨论了试样制造方法、测试模式(力、位移或应变控制)、测试速率(力速率、应力速率、位移速率或应变速率)、允许弯曲以及数据收集和报告程序。注意,本试验方法中使用的抗拉强度是指在单调单轴载荷下获得的抗拉强度,其中单调是指从试验开始到最终断裂没有逆转的连续不间断试验速率。1.2 该测试方法主要适用于所有具有连续纤维增强的高级陶瓷基复合材料:单向(1D)、双向(2D)和三向(3D)。此外,该测试方法也可用于具有1D、2D和3D连续纤维增强的玻璃(非晶)基复合材料。该测试方法不直接涉及不连续纤维增强、晶须增强或颗粒增强陶瓷,尽管此处详述的测试方法可能同样适用于这些复合材料。 1.3 本试验方法中表示的数值符合国际单位制(SI)和 IEEE/ASTM SI 10 . 1.4 本标准并不旨在解决与其使用相关的所有安全性问题(如果有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践并确定法规限制的适用性。具体危害陈述见第节 7 和 8.2.5.2 . 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ======意义和用途====== 4.1 该测试方法可用于材料开发、材料比较、质量保证、表征和设计数据生成。 4.2 通常以细晶粒尺寸(<50 μ m)基体和陶瓷纤维增强体为特征的连续纤维增强陶瓷基复合材料是要求高耐磨性和耐腐蚀性的结构应用的候选材料,并且-温度固有损伤容限(即韧性)。此外,连续纤维增强玻璃(无定形)基复合材料是类似但可能要求较低的应用的候选材料。尽管弯曲试验方法通常用于评估整体先进陶瓷的强度,但弯曲试样的不均匀应力分布以及CFCC在拉伸和压缩中的不同机械性能导致从CFCC弯曲试验获得的强度结果解释的模糊性。单轴加载拉伸强度测试提供了关于均匀应力材料的机械性能和强度的信息。 4.3 与从单个主要缺陷灾难性断裂的整体先进陶瓷不同,CFCC通常从累积损伤过程中经历“优雅”断裂。因此,对于单个单轴加载拉伸试验,经受均匀拉伸应力的材料体积可能不是确定CFCC极限强度的重要因素。然而,不排除测试统计上显著数量的拉伸测试样本的需要。因此,由于CFCC脆性基体强度分布的概率性质,在每种试验条件下需要足够数量的试样进行统计分析和设计。确定试样体积对CFCC强度分布的确切影响的研究尚未完成。应该注意的是,由于这些体积差异,使用在规格部分中具有不同体积的材料的不同推荐拉伸试样获得的拉伸强度可能不同。4.4 拉伸试验提供了材料在单轴拉伸应力下的强度和变形的信息。需要均匀的应力状态来有效地评估任何非线性应力-应变行为,所述非线性应力-应变行为可能是累积损伤过程的结果(例如,基体开裂、基体/纤维脱粘、纤维断裂、分层等)。),所述累积损伤过程可能受到测试模式、测试速率、加工或合金化效应或环境影响的影响。这些影响中的一些可能是应力腐蚀或亚临界(缓慢)裂纹扩展的结果,可以通过在本试验方法中概述的足够快的速率下进行试验来最小化。 4.5 由特定材料或零件的选定部分或两者制成的标准化尺寸的试样的拉伸试验结果可能不完全代表整个、全-确定最终产品或其在不同环境中的使用行为的尺寸。 4.6 出于质量控制的目的,在给定初级加工条件和加工后热处理的情况下,从标准化拉伸测试样本得出的结果可以被认为是获取它们的材料的响应的指示。 4.7 CFCC的拉伸行为和强度取决于其固有的抗断裂性、缺陷的存在或损伤积累过程或两者。尽管超出了本试验方法的范围,但强烈建议对断裂表面和断口进行分析。
1.1 This test method covers the determination of tensile behavior including tensile strength and stress-strain response under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at ambient temperature. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Note that tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture. 1.2 This test method applies primarily to all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D). In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, and 3D continuous fiber reinforcement. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites. 1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7 and 8.2.5.2 . 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation. 4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by fine grain-sized (<50 μm) matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and high-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure specimen in addition to dissimilar mechanical behavior in tension and compression for CFCCs lead to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material. 4.3 Unlike monolithic advanced ceramics which fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strength distributions of the brittle matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile specimens with different volumes of material in the gauge sections may be different due to these volume differences. 4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) which may be influenced by testing mode, testing rate, processing or alloying effects, or environmental influences. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method. 4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments. 4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for, given primary processing conditions and post-processing heat treatments. 4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.
分类信息
关联关系
研制信息
归口单位: C28.07
相似标准/计划/法规