首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM C1359-18e1
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Monotonic Tensile Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics With Solid Rectangular Cross Section Test Specimens at Elevated Temperatures 高温下用实心矩形截面试样对连续纤维增强高级陶瓷进行单调拉伸强度试验的标准试验方法
发布日期: 2018-08-01
1.1 本试验方法涵盖在高温下连续纤维增强高级陶瓷在单调单轴载荷下的拉伸强度测定,包括应力应变行为。本试验方法涉及但不限于附录中列出的各种建议试样几何形状。此外,还讨论了试样制造方法、测试模式(力、位移或应变控制)、测试速率(力速率、应力速率、位移速率或应变率)、允许弯曲、温度控制、温度梯度以及数据收集和报告程序。本试验方法中使用的抗拉强度是指在单调单轴载荷下获得的抗拉强度,其中单调是指从试验开始到最终断裂没有反转的连续不间断试验速率。 1.2 本试验方法主要适用于具有连续纤维增强的高级陶瓷基复合材料: 单向(1D)、双向(2D)和三向(3D)或其他多向钢筋。此外,该试验方法也可用于具有1D、2D、3D和其他多向连续纤维增强体的玻璃(非晶)基复合材料。本试验方法不直接涉及不连续纤维增强、晶须增强或颗粒增强陶瓷,尽管此处详述的试验方法可能同样适用于这些复合材料。 1.3 以国际单位制表示的数值应视为标准,并符合 IEEE/ASTM SI 10 . 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 请参阅第节 7. 具体预防措施。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 该试验方法可用于材料开发、材料比较、质量保证、表征、可靠性评估和设计数据生成。 4.2 连续纤维增强陶瓷基复合材料通常以晶体基体和陶瓷纤维增强体为特征,是需要高耐磨性和耐腐蚀性以及高温固有损伤容限(即韧性)的结构应用的候选材料。此外,连续光纤- 增强玻璃(非晶)基复合材料是类似但要求可能较低的应用的候选材料。尽管弯曲试验方法通常用于评估整体高级陶瓷的强度,但弯曲试样的不均匀应力分布,以及CFCC在拉伸和压缩中的不同机械行为,导致对CFCC弯曲试验获得的强度结果的解释不明确。单轴加载拉伸强度试验提供了均匀应力材料的机械行为和强度信息。 4.3 与从单一主要缺陷灾难性断裂的单片高级陶瓷不同,CFCC通常从累积损伤过程中经历“优雅”(即,非灾难性、类韧性应力应变行为)断裂。因此,在单轴加载拉伸试验中,承受均匀拉伸应力的材料体积可能不是确定CFCC极限强度的重要因素。 然而,不排除需要测试统计上显著数量的拉伸试样。因此,由于脆性纤维和氟氯化碳基体强度的概率性质,在每个测试条件下需要足够数量的试样进行统计分析和设计。确定试样体积或表面积对CFCC强度分布影响的研究尚未完成。应注意的是,由于这些体积差异,使用不同推荐的拉伸试样几何形状以及量规截面中不同体积的材料获得的拉伸强度可能不同。 4.4 拉伸试验提供了材料在单轴拉伸应力下的强度和变形信息。需要均匀应力状态来有效评估任何非线性应力应变行为,这些行为可能是累积损伤过程(例如,基体开裂、基体/纤维脱粘、纤维断裂、分层等)的结果,这些过程可能会受到测试模式、测试速率、加工效果或组成材料组合、环境影响的影响,或高温。 其中一些影响可能是应力腐蚀或亚临界(缓慢)裂纹扩展的后果,可以通过本试验方法中概述的足够快的速度进行试验来最小化。 4.5 从特定材料或零件的选定部分或两者制成的标准尺寸试样的拉伸试验结果可能不能完全代表整个全尺寸最终产品的强度和变形特性或其在不同环境或不同高温下的使用行为。 4.6 出于质量控制目的,从标准化拉伸试样得出的结果可被视为指示材料在特定主要加工条件和加工后热处理下的响应。 4.7 CFCC的拉伸行为和强度取决于其固有的断裂阻力、缺陷的存在或损伤累积过程,或两者兼而有之。 虽然不在本试验方法的范围内,但建议对断裂面和断口进行分析。
1.1 This test method covers the determination of tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, temperature control, temperature gradients, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture. 1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites. 1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation. 4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by crystalline matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and elevated-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure test specimen, in addition to dissimilar mechanical behavior in tension and compression for CFCCs, leads to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material. 4.3 Unlike monolithic advanced ceramics that fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” (that is, non-catastrophic, ductile-like stress-strain behavior) fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strengths of the brittle fibers and matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the influence of test specimen volume or surface area on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile test specimen geometries with different volumes of material in the gage sections may be different due to these volume differences. 4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, and so forth) that may be influenced by testing mode, testing rate, effects of processing or combinations of constituent materials, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method. 4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments or various elevated temperatures. 4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for the particular primary processing conditions and post-processing heat treatments. 4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is recommended.
分类信息
关联关系
研制信息
归口单位: C28.07
相似标准/计划/法规
现行
ASTM C1773-21
Standard Test Method for Monotonic Axial Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramic Tubular Test Specimens at Ambient Temperature
环境温度下连续纤维增强高级陶瓷管试样单调轴向拉伸性能的标准试验方法
2021-07-01
现行
ASTM C1275-18
Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature
标准试验方法连续纤维增强高级陶瓷在环境温度下具有实心矩形截面试样的单调拉伸行为
2018-01-01
现行
ASTM C1424-15(2019)
Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature
高级陶瓷在室温下单调抗压强度的标准试验方法
2019-07-01
现行
ASTM C1358-18
Standard Test Method for Monotonic Compressive Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross Section Test Specimens at Ambient Temperatures
室温下用实心矩形截面试样对连续纤维增强高级陶瓷的单调抗压强度试验的标准试验方法
2018-07-01
现行
ASTM D2209-00(2021)
Standard Test Method for Tensile Strength of Leather
皮革拉伸强度的标准试验方法
2021-09-01
现行
ASTM C1499-19(2024)
Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature
环境温度下高级陶瓷单调等双轴弯曲强度的标准试验方法
2024-09-01
现行
ASTM C1468-19a
Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature
室温下连续纤维增强高级陶瓷的横向拉伸强度的标准试验方法
2019-07-01
现行
KS F 2423
콘크리트의 쪼갬 인장 강도 시험방법
混凝土抗拉劈裂强度的标准试验方法
2021-12-27
现行
ASTM C1557-20
Standard Test Method for Tensile Strength and Young's Modulus of Fibers
纤维拉伸强度和杨氏模量的标准试验方法
2020-01-01
现行
ASTM C1006/C1006M-20a
Standard Test Method for Splitting Tensile Strength of Masonry Units
分析砌块单位拉伸强度的标准试验方法
2020-07-01
现行
JIS A 1113-2006
Method of test for splitting tensile strength of concrete (FOREIGN STANDARD)
混凝土劈裂抗拉强度试验方法(国外标准)
2006-01-01
现行
ASTM D6768/D6768M-20
Standard Test Method for Tensile Strength of Geosynthetic Clay Liners
土工合成层压板拉伸强度的标准试验方法
2020-05-01
现行
ASTM C297/C297M-16(2024)
Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions
夹层结构平面抗拉强度的标准试验方法
2024-08-01
现行
ASTM D8480-23
Standard Test Method for Determining the Tensile Strength of GCCM Materials
GCCM材料抗拉强度测定的标准试验方法
2023-10-01
现行
ASTM C363/C363M-24
Standard Test Method for Node Tensile Strength of Honeycomb Core Materials
蜂窝芯材料节点抗拉强度的标准试验方法
2024-09-15
现行
ASTM C496/C496M-17
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
ASTM C 1296-2006圆柱形混凝土试样的分裂抗拉强度的标准试验方法
2017-10-01
现行
ASTM D6931-17
Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures
沥青混合料间接拉伸强度的标准试验方法
2017-07-01
现行
ASTM D4073/D4073M-06(2024)
Standard Test Method for Tensile-Tear Strength of Bituminous Roofing Membranes
沥青屋面薄膜拉伸撕裂强度的标准试验方法
2024-11-01
现行
ASTM C1819-21
Standard Test Method for Hoop Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramic Composite Tubular Test Specimens at Ambient Temperature Using Elastomeric Inserts
使用弹性嵌件在环境温度下连续纤维增强高级陶瓷复合管试样环向抗拉强度的标准试验方法
2021-07-01
现行
ASTM C1863-18
Standard Test Method for Hoop Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramic Composite Tubular Test Specimens at Ambient Temperature Using Direct Pressurization
连续纤维增强先进陶瓷复合材料管状试样在环境温度下的箍抗拉强度的标准试验方法
2018-01-01