首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM C1366-19
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Elevated Temperatures 整体高级陶瓷高温拉伸强度的标准试验方法
发布日期: 2019-08-01
1.1 本试验方法包括在高温下测定整体高级陶瓷在单轴载荷下的抗拉强度。本试验方法涉及但不限于附录中列出的各种建议试样几何形状。此外,还介绍了试样制造方法、测试模式(力、位移或应变控制)、测试速率(力速率、应力速率、位移速率或应变率)、允许弯曲以及数据收集和报告程序。本试验方法中使用的抗拉强度是指在单轴载荷下获得的抗拉强度。 1.2 本试验方法主要适用于宏观上表现出各向同性、均匀、连续行为的高级陶瓷。虽然本试验方法主要适用于整体高级陶瓷、某些晶须或颗粒增强复合陶瓷以及某些不连续纤维- 增强复合陶瓷也可能满足这些宏观行为假设。通常,连续纤维陶瓷复合材料(CFCC)在宏观上不会表现出各向同性、均匀、连续的行为,不建议将本试验方法应用于这些材料。 1.3 以国际单位制表示的数值应视为标准,并符合 IEEE/ASTM SI 10 . 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 请参阅第节 7. 具体预防措施。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 该试验方法可用于材料开发、材料比较、质量保证、表征、可靠性评估和设计数据生成。 4.2 高强度、整体式高级陶瓷材料通常具有较小的晶粒尺寸(<50μm)和接近理论密度的体积密度。这些材料是需要高耐磨性、耐腐蚀性和高温强度的承重结构应用的候选材料。尽管弯曲试验方法通常用于评估高级陶瓷的强度,但弯曲试样的不均匀应力分布限制了承受断裂时最大施加应力的材料体积。单轴加载拉伸强度试验提供了更多均匀应力材料的强度极限缺陷信息。 4.3 由于脆性材料(如高级陶瓷)的概率强度分布,在每个测试条件下需要足够数量的试样进行统计分析和最终设计,并在本测试方法中提供足够数量的指南。实践中讨论的尺寸缩放效应 C1239 将影响强度值。因此,由于这些尺寸差异,使用不同推荐拉伸试样几何形状以及计量截面中材料的不同体积或表面积获得的强度将不同。原则上,产生的强度值可以按实际讨论的有效体积或有效单位表面积进行缩放 C1239 . 4.4 拉伸试验提供了材料在单轴应力下的强度和变形信息。需要均匀应力状态来有效评估任何非线性应力- 由于测试模式、测试速率、加工或合金化效应、环境影响或温度升高而产生的应变行为。这些影响可能是应力腐蚀或亚临界(缓慢)裂纹扩展的后果,可以通过按本试验方法中概述的适当快速速率进行试验将其降至最低。 4.5 从特定材料或零件的选定部分或两者中按标准尺寸制造的试样的拉伸试验结果可能不能完全代表整个全尺寸最终产品的强度和变形特性或其在不同环境中的使用行为。 4.6 出于质量控制目的,从标准化拉伸试样得出的结果可被视为指示材料对特定主要加工条件和加工后热处理的响应。 4.7 陶瓷材料的抗拉强度取决于其固有的抗断裂能力和缺陷的存在。实践中描述的断裂面和断口分析 C1322 MIL-HDBK-790虽然超出了本试验方法的范围,但建议用于所有目的,尤其是设计数据。
1.1 This test method covers the determination of tensile strength under uniaxial loading of monolithic advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under uniaxial loading. 1.2 This test method applies primarily to advanced ceramics which macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics as well as certain discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this test method to these materials is not recommended. 1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation. 4.2 High-strength, monolithic advanced ceramic materials are generally characterized by small grain sizes (<50 μm) and bulk densities near the theoretical density. These materials are candidates for load-bearing structural applications requiring high degrees of wear and corrosion resistance and elevated-temperature strength. Although flexural test methods are commonly used to evaluate strength of advanced ceramics, the nonuniform stress distribution of the flexure specimen limits the volume of material subjected to the maximum applied stress at fracture. Uniaxially loaded tensile strength tests provide information on strength-limiting flaws from a greater volume of uniformly stressed material. 4.3 Because of the probabilistic strength distributions of brittle materials such as advanced ceramics, a sufficient number of test specimens at each testing condition is required for statistical analysis and eventual design with guidelines for sufficient numbers provided in this test method. Size-scaling effects as discussed in Practice C1239 will affect the strength values. Therefore, strengths obtained using different recommended tensile test specimen geometries with different volumes or surface areas of material in the gage sections will be different due to these size differences. Resulting strength values can, in principle, be scaled to an effective volume or effective surface area of unity as discussed in Practice C1239 . 4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of testing mode, testing rate, processing or alloying effects, environmental influences, or elevated temperatures. These effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be minimized by testing at appropriately rapid rates as outlined in this test method. 4.5 The results of tensile tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire full-size end product or its in-service behavior in different environments. 4.6 For quality control purposes, results derived from standardized tensile test specimens can be considered to be indicative of the response of the material from which they were taken for particular primary processing conditions and post-processing heat treatments. 4.7 The tensile strength of a ceramic material is dependent on both its inherent resistance to fracture and the presence of flaws. Analysis of fracture surfaces and fractography as described in Practice C1322 and MIL-HDBK-790, though beyond the scope of this test method, are recommended for all purposes, especially for design data.
分类信息
关联关系
研制信息
归口单位: C28.01
相似标准/计划/法规
现行
ASTM C1273-18(2024)
Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures
室温下单片高级陶瓷抗拉强度的标准试验方法
2024-08-01
现行
ISO 15490-2008
Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for tensile strength of monolithic ceramics at room temperature
精细陶瓷(高级陶瓷、高级工业陶瓷)——室温下单片陶瓷拉伸强度的试验方法
2008-01-15
现行
BS ISO 15490-2008
Fine ceramics (advanced ceramics, advanced technical ceramics). Test method for tensile strength of monolithic ceramics at room temperature
精细陶瓷(高级陶瓷、高级工业陶瓷) 室温下单片陶瓷拉伸强度的试验方法
2008-03-31
现行
GB/T 23805-2009
精细陶瓷室温拉伸强度试验方法
Fine ceramics(advanced ceramics,advanced technical ceramics) - Test method for tensile strength of monolithic ceramics at room temperature
2009-05-13
现行
BS 07/30164018 DC
BS ISO 15490. Fine ceramics (advanced ceramics, advanced technical ceramics). Test method for tensile strength of monolithic ceramics at room temperature
BS ISO 15490 精细陶瓷(高级陶瓷、高级工业陶瓷) 室温下单片陶瓷拉伸强度的试验方法
2007-03-22
现行
ISO 22215-2006
Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for tensile creep of monolithic ceramics
精细陶瓷(高级陶瓷、高级工业陶瓷)——单片陶瓷拉伸蠕变试验方法
2006-01-09
现行
KS L 1599(2016 Confirm)
파인 세라믹스-단일체 세라믹스의 상온 및 고온 인장 강도 시험 방법
精细陶瓷(高级陶瓷、高级工业陶瓷)单片陶瓷室温和高温拉伸强度试验方法
2001-12-28
现行
KS L 1599(2021 Confirm)
파인 세라믹스-단일체 세라믹스의 상온 및 고온 인장 강도 시험 방법
精细陶瓷(高级陶瓷、高级工业陶瓷)-单片陶瓷室温和高温拉伸强度试验方法
2001-12-28
现行
KS L ISO 17565(2016 Confirm)
파인 세라믹스 - 단일체 세라믹스의 고온 꺾임강도 시험방법
精细陶瓷(高级陶瓷、高级工业陶瓷)单片陶瓷高温抗弯强度试验方法
2006-10-27
现行
KS L ISO 14704
파인 세라믹스 — 단일체 세라믹스의 실온 꺾임 강도 시험방법
精细陶瓷(先进陶瓷 先进技术陶瓷) - 室温下整体陶瓷的弯曲强度试验方法
2018-12-20
现行
KS L ISO 14704(2023 Confirm)
파인 세라믹스 — 단일체 세라믹스의 실온 꺾임 강도 시험방법
细陶瓷(高级陶瓷、高级工业陶瓷)单片陶瓷室温弯曲强度试验方法
2018-12-20
现行
KS L ISO 17565(2021 Confirm)
파인 세라믹스 - 단일체 세라믹스의 고온 꺾임강도 시험방법
精细陶瓷(高级陶瓷、高级工业陶瓷)-整体陶瓷高温弯曲强度试验方法
2006-10-27
现行
ISO 17565-2003
Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for flexural strength of monolithic ceramics at elevated temperature
精细陶瓷(高级陶瓷、高级工业陶瓷)——高温下单片陶瓷弯曲强度的试验方法
2003-12-12
现行
ISO 14704-2016
Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for flexural strength of monolithic ceramics at room temperature
精细陶瓷(先进陶瓷 先进技术陶瓷) - 室温下整体陶瓷的弯曲强度试验方法
2016-04-08
现行
GB/T 14390-2008
精细陶瓷高温弯曲强度试验方法
Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for flexural strength of monolithic ceramics at elevated temperature
2008-09-18
现行
GB/T 6569-2006
精细陶瓷弯曲强度试验方法
Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for flexural strength of monolithic ceramics at room temperature
2006-02-22
现行
ASTM C1869-18(2023)
Standard Test Method for Open-Hole Tensile Strength of Fiber-Reinforced Advanced Ceramic Composites
纤维增强高级陶瓷复合材料开孔抗拉强度的标准试验方法
2023-05-01
现行
BS 01/123703 DC
ISO 17565. Fine ceramics.(Advanced ceramics, advanced technical ceramics). Test method for flexural strength of monolithic ceramics at elevated temperature
ISO 17565 精细陶瓷 (高级陶瓷 高级技术陶瓷) 高温下单片陶瓷弯曲强度的试验方法
2001-11-19
现行
BS 07/30162593 DC
BS ISO 14704. Fine ceramics (advanced ceramics, advanced technical ceramics). Test method for flexural strength of monolithic ceramics at room temperature
BS ISO 14704 精细陶瓷(高级陶瓷、高级工业陶瓷) 室温下单片陶瓷弯曲强度的试验方法
2007-02-15
现行
ASTM C1468-19a
Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature
室温下连续纤维增强高级陶瓷的横向拉伸强度的标准试验方法
2019-07-01