Standard Guide for Additive Manufacturing of Metals – Powder Bed Fusion – Measurement and Characterization of Surface Texture
金属增材制造的标准指南-粉末床熔化-表面结构的测量和表征
1.1
This guide is designed to introduce the reader to techniques for surface texture measurement and characterization of surfaces made with metal powder bed fusion additive manufacturing processes. It refers the reader to existing standards that may be applicable for the measurement and characterization of surface texture.
1.2
Units—
The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.
1.3
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
3.1
Determining optimal strategies for the measurement and characterization of surface texture is necessary to increase confidence in the assessment of surfaces and in any further comparisons and correlations sought between manufactured surfaces, manufacturing processes, and desired functionality. Further, measurement and characterization of surface texture have implications in the field of tribology and in the determination and specification of part quality. This guide is designed to provide users of measurement technologies in both industry and academia with good practice for optimizing measurements of surfaces produced by metal powder bed fusion (PBF) manufacturing processes. While the focus of this guide is on surfaces produced by metal PBF, some of the referenced methods may also be appropriate for surfaces produced by other manufacturing processes.