1.1
生物膜表面测试方案(BSTP)是一种高通量筛选方法,用于确定液体试剂或浸渍、涂覆或以其他方式结合到医疗装置或表面中的试剂的抗微生物活性。该实践也可用于评价不含抗微生物剂的表面改性装置。该实践的一个关键特征是生物膜在感兴趣的相关表面上的生长和挑战,而不是在预定材料如聚苯乙烯上(参见,例如,测试方法
E2799
).
1.2
BSTP结合了关键显著特征,以提供对设备/表面的简单、稳健的挑战,同时模拟设备将暴露于的真实世界环境。这种做法模仿主机环境(例如,通过预-用相关介质如血清、人工尿液或人工粘液调节装置/表面)、装置将暴露于的生物体的范围(例如,临床分离物)以及装置将在临床或环境环境中被使用和呈现给攻击生物体时的构象(例如,如果需要,测试可以评估导管的管腔内和管腔外表面或限于管腔外表面)。该测定的变化与
体内
模型和人体临床试验
(
1-
3
)
.
2
器械或表面的腐蚀、结壳或生物污垢也可以使用该实践进行评估。
1.3
这种做法是通用的,可用于生长和评估许多不同生物体的生物膜,例如
铜绿假单胞菌
,
肺炎克雷伯菌
,
产气肠杆菌
,
表皮葡萄球菌
,
金黄色葡萄球菌
,
白色念珠菌
,
粪肠球菌
,
大肠杆菌
,
密歇根克拉维杆菌
,
镰刀菌
sp.
大丽花黄萎病菌
,和
灰葡萄孢
(
参见参考文献
4-
8
)
未发表研究的其他例子包括
肠道沙门氏菌
,
奇异变形杆菌
,和
单核细胞增生李斯特菌
当测试本文未指定的生物体时,可能需要对实践进行适当的修改。
1.4
消毒剂中和的验证可以作为测定的一部分。
1.5
本实践描述了如何对生物膜取样并定量活细胞。生物膜种群密度记录为对数
10
每个器械的菌落形成单位。为了测试由于浸出引起的任何抗微生物活性,将悬浮细菌种群密度报告为对数
10
每体积的菌落形成单位。疗效报告为对数
10
活细胞减少。或者或另外,可以使用定性或半定量评估,例如比色染色、显微镜检查或最小生物膜根除浓度的浊度评估(MBEC;参见测试方法
E2799
).
1.6
这种做法只能由受过微生物技术培训的人员进行。
1.7
研究者有责任确定是否需要药物非临床研究质量管理规范(GLP),并在适当时遵循这些规范。
1.8
单位-
以SI单位表示的值将被视为标准值。本标准不包括其他计量单位。
1.9
本标准并不旨在解决与其使用相关的所有安全性问题(如果有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践并确定法规限制的适用性。
1.10
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。
======意义和用途======
5.1
营养生物膜细菌在表型上不同于相同基因型的悬浮浮游细胞
(
9
)
生物膜是许多植入物和装置相关感染的病原体,并且一旦建立,生物膜中的微生物对抗生素治疗的耐受性可以提高1000倍。5.2
生物膜生长反应器被设计成产生具有特定特征的生物膜。改变工程系统或操作条件将改变这些特性。生物膜研究和功效测试的目标是选择为特定研究产生最相关生物膜的生长反应器
(
10
)
在实验室中用于生长生物膜的常见系统包括流动池、滴流反应器、旋转盘反应器和管式生物膜反应器。这些专门的模型有几个优点,包括生物膜生长到高种群密度和受控的流体动力学。该实践的目的是指导用户如何使用更简单的BSTP在几乎任何医疗设备或感兴趣的材料的表面上生长、处理、取样和分析生物膜。5.3
BSTP最初被设计为用于评估表面生物膜生长的快速和可重复的测定
(
9和
11
)
该设计允许同时评估多个参数——例如测试多种消毒剂或同一消毒剂的多种浓度、测试多个表面(例如,涂覆的与未涂覆的)、多种攻击生物、各种生长介质、生长/攻击时间等——使其成为有效的筛选工具。除了通过使用多孔板提供的通量之外,BSTP通过将测试装置/表面固定到多孔板的盖子允许极其容易的冲洗、培养基更换、挑战和回收步骤。此外,BSTP不需要专门的反应器或设备,并且因为它不依赖于连续流动,所以使用相对小体积的介质和其他试剂。
1.1
The Biofilm Surface Test Protocol (BSTP) is a high-throughput screening approach used to determine the antimicrobial activity of either liquid agents or agents impregnated, coated, or otherwise incorporated into a medical device or surface. This practice may also be used to evaluate surface-modified devices that contain no antimicrobial agent. A key feature of this practice is the growth and challenge of biofilms on a relevant surface of interest, as opposed to a predetermined material such as polystyrene (see, for instance, Test Method
E2799
).
1.2
The BSTP incorporates key salient features to provide a simple, robust challenge of the device/surface while simulating the real-world environment to which the device will be exposed. This practice mimics the host environment (for example, by pre-conditioning the device/surface with a relevant medium, such as serum, artificial urine, or artificial mucous), the scope of organisms to which the device will be exposed (for example, clinical isolates), and the conformation of the device as it will be used and presented to the challenge organisms in a clinical or environmental setting (for example, if desired, testing can evaluate both the intraluminal and extraluminal surface of a catheter or be limited to the extraluminal surface). Variations of this assay have been correlated to
in vivo
models and human clinical trials
(
1-
3
)
.
2
Corrosion, encrustation, or biofouling of devices or surfaces can also be evaluated using this practice.
1.3
This practice is versatile and can be used for growing and evaluating biofilms of many different organisms, such as
Pseudomonas aeruginosa
,
Klebsiella pneumoniae
,
Enterobacter aerogenes
,
Staphylococcus epidermidis
,
Staphylococcus aureus
,
Candida albicans
,
Enterococcus faecalis
,
Escherichia coli
,
Clavibacter michiganensis
,
Fusarium
sp.
Verticillium dahlia
, and
Botrytis cinerea
(
see Refs
4-
8
)
. Other examples from unpublished studies include
Salmonella enterica
,
Proteus mirabilis
, and
Listeria monocytogenes
. Appropriate modifications to the practice may be required when testing organisms not specified herein.
1.4
Validation of disinfectant neutralization can be included as part of the assay.
1.5
This practice describes how to sample a biofilm and quantify viable cells. Biofilm population density is recorded as log
10
colony forming units per device. To test for any antimicrobial activity due to leaching, suspended bacterial population density is reported as log
10
colony forming units per volume. Efficacy is reported as the log
10
reduction of viable cells. Alternatively, or additionally, qualitative or semi-quantitative assessments can be utilized, such as colorimetric staining, microscopy, or turbidimetric assessment of the minimal biofilm eradication concentration (MBEC; see Test Method
E2799
).
1.6
This practice should be performed only by those trained in microbiological techniques.
1.7
It is the responsibility of the investigator to determine whether Good Laboratory Practices (GLPs) are required and to follow them when appropriate.
1.8
Units—
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.9
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.10
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Vegetative biofilm bacteria are phenotypically different from suspended planktonic cells of the same genotype
(
9
)
. Biofilm is the etiological agent of many implant and device-related infections and, once established, microorganisms in biofilm can be up to 1000 times more tolerant to antibiotic therapy.
5.2
Biofilm growth reactors are engineered to produce biofilms with specific characteristics. Altering either the engineered system or operating conditions will modify those characteristics. The goal in biofilm research and efficacy testing is to choose the growth reactor that generates the most relevant biofilm for a particular study
(
10
)
. Common systems used to grow biofilms in laboratories include flow cells, drip flow reactors, spinning-disk reactors, and tube biofilm reactors. These specialized models have several advantages, including growth of biofilms to high population densities and controlled fluid dynamics. The purpose of this practice is to direct a user in how to grow, treat, sample, and analyze a biofilm on the surface of virtually any medical device or material of interest, using the more simplistic BSTP.
5.3
The BSTP was originally designed as a rapid and reproducible assay for evaluating biofilm growth on surfaces
(
9 and
11
)
. The design allows for the simultaneous evaluation of multiple parameters—such as testing multiple disinfectants or multiple concentrations of the same disinfectant, testing multiple surfaces (for example, coated versus uncoated), multiple challenge organisms, various growth media, growth/challenge times, and so on—making it an efficient screening tool. In addition to the throughput afforded by the use of a multi-well plate, the BSTP allows for extremely facile rinses, media changes, challenges, and recovery steps by virtue of immobilizing the test devices/surfaces to the lid of the multi-well plate. Moreover, the BSTP requires no specialized reactors or equipment and, as it does not depend upon continuous flow, uses relatively small volumes of media and other reagents.