1.1
在进行测试方法时,重要的是考虑环境条件在自动测试中的作用 – 无人地面车辆(A-UGV)性能。各种A-UGV设计用于在制造商规定的条件下在室内和室外操作。同样,无人值守地面车辆的最终用户将在各种环境条件下操作这些车辆。当车辆制造商和用户执行和复制F45测试方法时,必须指定并记录A-UGV测试的环境条件,因为这些条件会导致车辆性能的变化,尤其是在比较和复制测试结果集时。
在操作过程中考虑环境条件的变化也很重要(例如,条件之间的转换)。因此,本规程中规定的环境条件为静态、动态或过渡,或其组合;A-UGV静止或运动时。本规程简要介绍了以下可能影响无人值守地面车辆性能的环境条件:照明、外部传感器发射、温度、湿度、电气干扰、空气质量、地面和边界。然后,这种做法将每个条件分解为子条件-
类别,以便用户可以在ASTM F45测试方法(例如,
F3244
). 建议在进行F45试验方法时记录显著的环境条件。
1.2
中列出的环境条件
1.1
将在第节中描述并参数化待测试的A-UGV
4.
并为测试方法中的性能比较奠定基础。该方法是将环境条件列表划分为代表主要类别各个方面的子条件(例如,环境照明中的阳光)。
必要时,本规程还提供了指南(例如,照明方向),以记录现有环境中的环境条件。
1.3
以国际单位制表示的数值应视为标准。括号中给出的值不是英制单位的精确数学转换。它们是近似等效物,用于指定材料尺寸或数量,以避免试验装置的过度制造成本,同时保持试验方法结果的重复性和再现性。括号中给出的这些值仅供参考,不被视为标准值。
1.4
本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.5
本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。
====意义和用途======
4.1
本节描述了第节中列出的环境条件
1.
并描述了每个条件中的子条件。许多条件和子条件的示例仅供参考。应按照第节的规定评估和记录所述的每种情况
5.
,
6.
和
7.
.
4.2
环境一致性:静态、动态、过渡:
4.2.1
静态是指整个测试装置中的环境相似。例如,如所示,整个装置的温度波动较小
图1
和
图2
. 动态是指测试装置内的环境显著不同。例如,当温度在重复之间发生变化时,如所示
图3
. 过渡是指试验装置内不同区域的环境显著不同,如所示
图4
. 这里的目的不是给出具体的指导,而是提供一组特定环境条件的高级分类。如果环境一致性是动态的或过渡的,或两者都是,则报告表单(请参阅第节)
7.
)对于每一组独特的环境条件,应完成。
图1
使用温度的静态环境示例
图2
使用温度的静态环境示例,并显示两个静态环境之间的转换
图3
使用温度的动态环境示例,表明环境在测试过程中发生了变化
图4
使用温度的过渡环境示例;部分环境可能保持静态或动态(例如,从冷到冷)
4.3
照明:
4.3.1
各种照明条件可能会影响传感器,进而影响A-UGV的响应性,从而潜在地影响A-UGV光学传感器的性能。光源可以包括环境照明以及与照明相关的发射器-
UGV操作。两种照明设置包括应用于A-UGV的直接光源或环境光源。直接照明还可以包括来自高反射表面的反射光,并意味着光源指向a-UGV受光影响的部件(例如传感器)。间接光或环境光包括光源不直接应用于A-UGV受光影响部件的照明。光强度分为五个级别,例如黑暗、昏暗、典型的室内照明、聚光灯和全阳光。
4.3.2
环境照明类型:
4.3.2.1
外露灯泡(例如,荧光灯、can灯),
4.3.2.2
聚光灯(例如,直接远离A-UGV),
4.3.2.3
阳光(例如,A-UGV在明亮的阳光下测试),
4.3.2.4
反射(例如,灯泡指向天花板),
4.3.2.5
过滤(例如,通过半透明玻璃的漫射光)。
4.3.3
定向照明类型:
4.3.3.1
外露灯泡,
4.3.3.2
聚光灯
4.3.3.3
阳光(例如,A-UGV朝向/导航至低阳光位置),
4.3.3.4
反射,
4.3.3.5
已过滤,
4.3.3.6
激光
4.3.3.7
其他车辆发出的光。
4.3.4
光源位置-
记录间接和直接光源相对于A的位置和标高-
UGV(参考
图5
).
图5
相对于a-UGV的照明方向(a)俯视图和(b)侧视图和(c)立面图
4.3.5
照明水平:
4.3.5.1
级别1:0到1勒克斯(例如,深色)。
4.3.5.2
2级:2至99勒克斯(例如,dim)。
4.3.5.3
3级:100至1000勒克斯(例如,办公环境)。
4.3.5.4
4级:1001至9999勒克斯(例如,高强度工作灯、聚光灯)。
4.3.5.5
5级:10000勒克斯及以上(例如,全阳光)。
4.3.6
光谱-
识别原色和峰值波长。
4.3.7
极化-
识别极化源和相对于已知参考(例如,世界坐标)的角度。
4.3.8
如果需要更具体的测量,可以使用以下文件和标准:国家光学天文观测台的“推荐亮度”
9
和ISO 15469。
4.4
外部排放:
4.4.1
当发射器位于A-UGV外部(例如,来自另一个A-UGV的环境)时,可能会干扰A-UGV传感器系统。外部辐射源可能会影响无人值守地面车辆的性能,例如:多个飞行时间摄像机、叉车行人灯、三维结构光传感器、光检测和测距传感器(LIDAR)。
4.4.2
外部发射器配置:
4.4.2.1
发射器类型。
4.4.2.2
发射器数量。
4.4.3
外部发射器源位置-
记录相对于A-UGV的发射器源位置和高程(参考
图5
); 在测试方法图纸的适当位置添加外部发射器符号。
4.4.4
光谱-
识别原色和峰值波长。
4.5
温度:
4.5.1
温度变化和极端情况可能会影响A-UGV的性能。温度范围从最低到最高,用五个级别表示。温度变化会影响车载电子设备,产生冷凝,导致液压油粘度,降低电池寿命和充电率。
4.5.2
温度水平(单位为°C):
4.5.2.1
1级:低于0°C至0°C(例如,冷冻柜)。
4.5.2.2
2级:0°C至15°C(例如,易腐储存)。
4.5.2.3
3级:16°C至26°C(例如,办公室、仓库)。
4.5.2.4
4级:27°C至49°C(例如仓库)。
4.5.2.5
5级:高于49°C(例如,铸造厂、锻造厂)。
4.6
湿度:
4.6.1
湿度是指车辆周围空气中所含的水蒸气量。高湿度加上露点温度会导致冷凝,导致电子器件短路,并影响透镜和其他A-UGV组件。大于60 % 湿度会导致金属零件的腐蚀大幅增加。
另一方面,低湿度会导致静电急剧增加,需要充分放电。
4.6.2
相对湿度水平:
4.6.2.1
低–小于30 %.
4.6.2.2
中等偏低–31至55 %.
4.6.2.3
中等偏高–56%至75%。
4.6.2.4
高–大于75 %.
4.6.3
露点温度-
空气中的水蒸气凝结成液体露水的最高温度。
4.7
电气干扰:
4.7.1
一些表面的导电性不足以为A-UGV提供足够的接地。地面车辆具有浮动的电气接地。随着车辆上静电积聚,蓄电池正极导线和底盘的电压降发生变化,车辆的电子部件受到负面影响。
强磁场会影响车载电气部件,尤其是车载计算机内的任何数据存储。许多无人值守地面车辆需要无线网络连接才能实现全部功能。射频干扰会降低这些网络和无人值守地面车辆的能力。
4.7.2
有关电磁兼容性问题,请参阅:
4.7.2.1
BS EN 12895电磁兼容性 – 排放和抗扰度。
4.7.2.2
MIL-STD-462 – 电磁干扰发射和敏感性。
4.7.2.3
IEC 61000-4-1电磁兼容性(EMC) – 第4-1部分:测试和测量技术 – 抗扰度测试概述
4.7.2.4
IEC 61000-6 – 工业环境排放标准
4.8
空气流量和质量:
4.8.1
气流和质量是指A-UGV在存在空气颗粒或风或两者的情况下能够识别物体或光的能力。空气质量会影响A-UGV在目标检测、导航和对接方面的性能。空气质量取决于空气中颗粒的大小和体积密度。相对而言,平均人眼看不到小于40μm的颗粒,水汽雾通常包括5μm到50μm的颗粒,尘埃颗粒通常为0。
1μm至100μm。一个ISO 1级洁净室在一立方米空气中不超过10个大于0.1μm的颗粒。雾(水蒸气)粒子密度为1 amg,使地面上的人眼可见度约为125 m。
4.8.2
气流速度和方向-
记录关于A-UGV的气流源位置和标高(参考
图5
).
4.8.3
空气颗粒密度-
(可选)测量空气颗粒大小和体积密度。
4.8.3.1
清楚的 – (例如,洁净室,无可见空气微粒)。
4.8.3.2
适度的 – (例如,可见雾、灰尘、小雨/雪/雾)。
4.8.3.3
稠密的 – (例如,沙尘暴、大雪/雨/雾)。
4.8.4
如果需要更具体的测量,可以使用以下标准:
4.8.4.1
空气颗粒密度 – 清除:ISO 14644-1。
4.9
地板或地面:
4.9.1
A-UGV机动性受地面条件的影响,包括:表面纹理/粗糙度、可变形性、倾斜(斜坡)或波动(缺乏平整度)。地面条件会影响A-UGV:牵引力、振动会影响电子完整性、定位和稳定性。
4.9.2
类型:
4.9.2.1
近似类似于以下示例,其中可能存在多种地板类型,并在报告表上显示:例如,混凝土、油毡砖、地毯、泥土、草、沥青、木板等。
4.9.2.2
指示测试空间内的地板异常:例如,地板格栅、人孔盖、不可检测的(车辆传感器)凹口、透明地板等。
4.9.3
摩擦系数:
4.9.3.1
高(例如,拉丝混凝土、沥青)。
4.9.3.2
中等(例如,抛光/密封混凝土、钢板、填充污垢)。
4.9.3.3
低(例如,结冰、潮湿、润滑、干燥的沙子)。
4.9.4
间隙/步长-
可能成为a-UGV地图一部分的已知基础设施(参见
图6
).
图6
间隙和步长
4.9.4.1
差距-
相对于参考框架的长度、宽度、深度和间隙角度。
4.9.4.2
步骤-
相对于参考框架的步长、宽度、深度和角度。
4.9.4.3
对于每个间隙/步骤,还应记录间隙/步骤的描述。示例:尖锐间隙(装货码头和卡车之间)与圆形间隙(坑洞、地板凹坑);尖锐台阶(方形通道金属)与圆形台阶(电缆或电缆盖、减速带/驼峰)。
4.9.5
可变形性:
4.9.5.1
刚性(例如,混凝土、沥青)。
4.9.5.2
半刚性(例如,压实的泥土或砾石、湿砂、工业地毯)。
4.9.5.3
软的 – 可塑性(例如,雪、泥、干沙、软垫地毯)。
4.9.6
坡度(坡道)-
可能成为a-UGV地图一部分的已知基础设施。
4.9.6.1
1级*:0 % 至3 % (例如,名义上的平坦地板)。
4.9.6.2
2级*:4 % 至7 % (例如,工厂中的过渡坡道)。
4.9.6.3
3级:8 % 至10 % (例如,车场坡道=8 % 至9 %).
4.9.6.4
4级:11 % 至15 % (例如,陡峭的道路坡度)。
4.9.6.5
5级:16 % 及以上。
注1:
ITSDF B56.5将坡道定义为“地面坡度变化超过3 % 以及需要评级数据差异的长度。”UL 3100第16.1节规定:“AGV应能够满足在平坦坡度和高达3.5米的斜坡上运行和控制的所有要求 % 级别。”
4.9.7
波动(仪器地面缺乏平整度):
4.9.7.1
平坦– 0 mm至6 mm变化超过3 m。
4.9.7.2
适度平坦- 3米范围内的变化超过6毫米至12毫米。
4.9.7.3
非平面- 3米范围内的变化超过12毫米至51毫米。
4.9.7.4
户外的 – 3米范围内变化超过51毫米。
4.9.8
颗粒物(文件类型和描述):
4.9.8.1
无(例如,干燥、清洁)。
4.9.8.2
精细(例如,纸板粉尘、混凝土粉尘)。
4.9.8.3
粗粒(例如砂、卵石)。
4.9.9
如果需要更具体的测量,可以使用以下标准:
4.9.9.1
变形性:ASTM试验方法
E1274
.
4.9.9.2
波动:ASTM试验方法
E1155M
.
4.
9.9.3
摩擦系数:ANSI B101.3。
4.10
边界:
4.10.1
边界是指A-UGV导航的定义装置、现有结构或地面异常或其组合。边界特征包括:
4.10.2
不透明墙(例如,白色干墙、不透明塑料、反光或平坦的黑色测试边界、波纹金属、路缘)。
4.10.3
半透明墙 – (例如,透明玻璃、磨砂玻璃、半透明塑料)。
4.10.4
负面障碍物(例如,悬崖、人行道的路缘、装货码头、排水渠)。
4.10.5
虚拟墙(例如-
UGV禁止区域映射在车辆控制器内的人行道边缘、负面障碍物边缘、限制区域)。
4.10.6
多孔墙(例如,铁丝网围栏、铁丝网围栏)。
4.10.7
高架分隔器(例如,货架、立柱和横梁围栏、伸缩式安全带分隔器)。
4.10.8
建筑基础设施(例如,机械、设备、无人值守地面车辆充电器)。
4.10.9
地板标记(例如,胶带、油漆)。
4.10.10
上述边界的混合(例如,平台边缘负落差前的栏杆和踢脚板,带钢丝网覆盖的柱子和梁围栏)。
4.10.11
移动边界(例如,移动滑动门或铰链门、移动窗帘);除非边界在测试过程中移动,否则环境应标记为静态,在这种情况下,环境应标记为动态,例如,a-UGV通过移动的软分区,或a-UGV通过导致其移动的软分区。
4.10.12
如果需要更具体的测量,可以使用以下标准和参考:
4.10.12.1
地板标记:
(1)
汽车行业行动小组(AIAG)职业健康和安全OH-2,行人和车辆安全指南(包括描述和标记描述)。
(2)
ANSI/ITSDF B56.5(第8.11.2节描述了危险区域)。
(3)
“5S质量工具在制造公司的实施:案例研究。”
10
1.1
When conducting test methods, it is important to consider the role that the environmental conditions play in the Automatic through Autonomous – Unmanned Ground Vehicle (A-UGV) performance. Various A-UGVs are designed to be operated both indoors and outdoors under conditions specified by the manufacturer. Likewise, end users of the A-UGV will be operating these vehicles in a variety of environmental conditions. When conducting and replicating F45 test methods by vehicle manufacturers and users, it is important to specify and document the environmental conditions under which the A-UGV is to be tested as there will be variations in vehicle performance caused by the conditions, especially when comparing and replicating sets of test results. It is also important to consider changes in environmental conditions during the course of operations (for example, transitions between conditions). As such, environmental conditions specified in this practice are static, dynamic, or transitional, or combinations thereof; with the A-UGV stationary or in motion. This practice provides brief introduction to the following list of environmental conditions that can affect performance of the A-UGV: Lighting, External sensor emission, Temperature, Humidity, Electrical Interference, Air quality, Ground Surface, and Boundaries. This practice then breaks down each condition into sub-categories so that the user can document the various aspects associated with the category prior to A-UGV tests defined in ASTM F45 Test Methods (for example,
F3244
). It is recommended that salient environment conditions be documented when conducting F45 test methods.
1.2
The environmental conditions listed in
1.1
to be documented for A-UGV(s) being tested are described and parameterized in Section
4
and allow a basis for performance comparison in test methods. The approach is to divide the list of environmental conditions into sub-conditions that represent the various aspects of the major category (for example, sunlight within ambient lighting). Where necessary, this practice also provides guidelines (for example, lighting direction) to document environmental conditions in an existing environment.
1.3
The values stated in SI units are to be regarded as the standard. The values given in parentheses are not precise mathematical conversion to imperial units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses are provided for information only and are not considered standard.
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
This section provides a description of the environmental conditions listed in Section
1
and describes the sub-conditions within each condition. Examples provided for many of the conditions and sub-conditions are provided as guidance only. Each of the conditions described should be evaluated and documented as set forth in Sections
5
,
6
, and
7
.
4.2
Environmental Consistency: Static, Dynamic, Transitional:
4.2.1
Static is when the environment is similar throughout the test apparatus. For example, there are minor fluctuations in temperature throughout the apparatus as shown in
Fig. 1
and
Fig. 2
. Dynamic is when the environment significantly differs within the test apparatus. For example, when the temperature changes between repetitions as shown in
Fig. 3
. Transitional is when the environment significantly differs in different areas within the test apparatus as shown in
Fig. 4
. The intent here is to not give specific guidance, but to provide a high-level classification of a particular set of environmental conditions. If environment consistency is dynamic or transitional, or both, a report form (see Section
7
) for each unique set of environmental conditions should be completed.
FIG. 1
Example of Static Environment using Temperature
FIG. 2
Example of Static Environment using Temperature and Showing a Transition between Two Static Environments
FIG. 3
Example of Dynamic Environment using Temperature and Showing that the Environment Changed during the Test
FIG. 4
Example of Transitional Environment using Temperature; Portions of the Environment May Remain Static or May Be Dynamic (for example, Cold to Colder)
4.3
Lighting:
4.3.1
Various lighting conditions can potentially affect A-UGV optical sensor performance by affecting sensor and in turn, A-UGV responsiveness. Lighting sources can include ambient lighting as well as light emitters associated A-UGV operation. Two setups for lighting include direct or ambient source(s) applied to the A-UGV. Direct lighting can also include reflected light from a highly reflective surface and implies that the source is directed at the light-affected components of the A-UGV (for example, sensors). Indirect or ambient light includes lighting where the source is not directly applied to the light-affected components of the A-UGV. Light intensity is divided into five levels exemplified through dark, dim, typical indoor lighting, spotlight, and full sunlight.
4.3.2
Ambient Lighting Type:
4.3.2.1
Exposed bulb (for example, fluorescent, can lights),
4.3.2.2
Spotlight (for example, direct away from the A-UGV),
4.3.2.3
Sunlight (for example, the A-UGV is tested in bright sunlight),
4.3.2.4
Reflected (for example, bulb directed at the ceiling),
4.3.2.5
Filtered (for example, diffused light through translucent glass).
4.3.3
Directed Lighting Type:
4.3.3.1
Exposed bulb,
4.3.3.2
Spotlight,
4.3.3.3
Sunlight (for example, the A-UGV faces/navigates towards low sun position),
4.3.3.4
Reflected,
4.3.3.5
Filtered,
4.3.3.6
Laser,
4.3.3.7
Light from another vehicle.
4.3.4
Lighting Source Location—
Document indirect and direct light source location and elevation with respect to the A-UGV (refer to
Fig. 5
).
FIG. 5
Lighting Direction (a) Top View and (b) Side View and (c) Elevation View with Respect to the A-UGV
4.3.5
Lighting Levels:
4.3.5.1
Level 1: 0 to 1 lux (for example, dark).
4.3.5.2
Level 2: 2 to 99 lux (for example, dim).
4.3.5.3
Level 3: 100 to 1000 lux (for example, office environment).
4.3.5.4
Level 4: 1001 to 9999 lux (for example, high intensity work light, spotlight).
4.3.5.5
Level 5: 10 000 lux and above (for example, full sunlight).
4.3.6
Spectrum—
Identify primary color and peak wavelength.
4.3.7
Polarization—
Identify the polarizing source and angle with respect to a known reference (for example, world coordinates).
4.3.8
If more specificity of measurement is required, the following documents and standards may be used: “Recommended Light Levels” from the National Optical Astronomy Observatory
9
and ISO 15469.
4.4
External Emission:
4.4.1
When emitters are outside of the A-UGV (for example, from another A-UGV, the environment) that can potentially interfere with the A-UGV sensor system. External radiation sources can affect the A-UGV performance, for example: multiple time-of-flight cameras, fork-lift pedestrian lights, 3D structured light sensors, light detection and ranging sensors (LIDAR).
4.4.2
External Emitter Configuration:
4.4.2.1
Type of emitter(s).
4.4.2.2
Quantity of emitter(s).
4.4.3
External Emitter Source Location—
Document emitter source location and elevation with respect to the A-UGV (refer to
Fig. 5
); add an external emitter symbol on the test method drawing in the appropriate location.
4.4.4
Spectrum—
Identify primary color and peak wavelength.
4.5
Temperature:
4.5.1
Temperature variability and extremes can affect the A-UGV performance. Temperature ranges span from low to high extremes expressed in five levels. Temperature variations can affect onboard electronics, create condensation, cause hydraulic fluid viscosity, reduce battery life and recharge rate.
4.5.2
Temperature Levels (in °C):
4.5.2.1
Level 1: below 0°C to 0°C (for example, freezer).
4.5.2.2
Level 2: 0°C to 15°C (for example, perishable storage).
4.5.2.3
Level 3: 16°C to 26°C (for example, office, warehouse).
4.5.2.4
Level 4: 27°C to 49°C (for example, warehouse).
4.5.2.5
Level 5: above 49°C (for example, foundries, forges).
4.6
Humidity:
4.6.1
Humidity refers to the amount of water vapor contained in the air around the vehicle. High humidity combined with dew point temperature causes condensation that can short electronics and affect lenses and other A-UGV components. Greater than 60 % humidity causes a large increase in corrosion of metallic parts. Low humidity, on the other hand, will see a dramatic rise in static electricity and the need for adequate discharge.
4.6.2
Relative Humidity Level:
4.6.2.1
Low – less than 30 %.
4.6.2.2
Moderately Low – 31 to 55 %.
4.6.2.3
Moderately High – 56 to 75%.
4.6.2.4
High – greater than 75 %.
4.6.3
Dew Point Temperature—
The highest temperature at which airborne water vapor will condense to form liquid dew.
4.7
Electrical Interference:
4.7.1
Some surfaces are not conductive enough to provide adequate grounding for an A-UGV. Ground vehicles have a floating electrical ground. As static builds up on the vehicle and the voltage drop from the positive lead of the battery and the chassis changes, the electronic components of the vehicle are negatively impacted. Strong magnetic fields can impact the onboard electrical components, and in particular, any data storage within the onboard computer. Many A-UGVs require wireless network connections for full functionality. Radio frequency (RF) interference can degrade these networks and A-UGV capability.
4.7.2
For Electro-magnetic compatibility issues, refer to:
4.7.2.1
BS EN 12895 Electromagnetic Compatibility – Emissions and Immunity.
4.7.2.2
MIL-STD-462 – EMI Emissions and Susceptibility.
4.7.2.3
IEC 61000-4-1 Electromagnetic Compatibility (EMC) – Part 4-1: Testing and Measurement Techniques – Overview of Immunity Tests
4.7.2.4
IEC 61000-6 – Emission Standards for Industrial Environments
4.8
Air Flow and Quality:
4.8.1
Air flow and quality refers to the ability that an A-UGV can discern an object or light in the presence of air particulates or wind, or both. Air quality can affect the A-UGV performance in terms of object detection, navigation, and docking. Air quality depends upon the size and volumetric density of particulates in the air. For relative comparison, the average human eye cannot see particles smaller than 40 μm, fog from water vapor typically includes particle sizes from 5 μm to 50 μm, and dust particles are typically 0.1 μm to 100 μm. An ISO Class 1 cleanroom has no more than 10 particles larger than 0.1 μm in a cubic meter of air. Fog (water vapor) particle density of 1 amg allows human visibility of about 125 m at ground level.
4.8.2
Air Velocity and Direction—
Document air flow source location and elevation with respect to the A-UGV (refer to
Fig. 5
).
4.8.3
Air Particle Density—
Optionally, measure the air particle size and volumetric density.
4.8.3.1
Clear – (for example, clean room, no visible air particulates).
4.8.3.2
Moderate – (for example, visible fog, dust, light to moderate rain/snow/fog).
4.8.3.3
Dense – (for example, dust storm, heavy snow/rain/fog).
4.8.4
If more specificity of measurement is required, the following standards may be used:
4.8.4.1
Air particle density – Clear: ISO 14644-1.
4.9
Floor or Ground Surface:
4.9.1
A-UGV mobility is affected by ground surface conditions including: surface texture/roughness, deformability, sloped (ramp) or undulation (lack of flatness). Ground surface conditions can affect A-UGV: traction, vibration affecting the electronics integrity, positioning, and stability.
4.9.2
Type(s):
4.9.2.1
Approximate similar to the following examples where multiple floor types may be present and indicated on the report form: for example, concrete, linoleum tile, carpet, dirt, grass, asphalt, wood plank, etc.
4.9.2.2
Indicate floor anomalies within the test space: for example, floor grate, manhole cover, undetectable (by vehicle sensors) divots, transparent flooring, etc.
4.9.3
Coefficient of Friction:
4.9.3.1
High (for example, brushed concrete, asphalt).
4.9.3.2
Moderate (for example, polished/sealed concrete, steel plates, packed dirt).
4.9.3.3
Low (for example, icy, wet, lubricated, dry sand).
4.9.4
Gap/Step—
Known infrastructure that could be a part of the A-UGV map (see
Fig. 6
).
FIG. 6
Gap and Step
4.9.4.1
Gap—
Length, width, depth, and angle of gap with respect to a reference frame.
4.9.4.2
Step—
Length, width, depth, and angle of step with respect to a reference frame.
4.9.4.3
For each gap/step, a description of the gap/step should also be documented. Examples: sharp gap (between loading dock and truck) vs. rounded gap (pothole, floor divot); sharp step (square channel metal) vs. rounded step (cable or cable cover, speed bump/hump).
4.9.5
Deformability:
4.9.5.1
Rigid (for example, concrete, asphalt).
4.9.5.2
Semi-rigid (for example, compacted dirt or gravel, wet sand, industrial carpet).
4.9.5.3
Soft – malleable (for example, snow, mud, dry sand, padded carpet).
4.9.6
Grade (Ramp)—
Known infrastructure that could be a part of the A-UGV map.
4.9.6.1
Level 1*: 0 % to 3 % (for example, nominally flat floor).
4.9.6.2
Level 2*: 4 % to 7 % (for example, transitional ramp in factories).
4.9.6.3
Level 3: 8 % to 10 % (for example, yard ramp = 8 % to 9 %).
4.9.6.4
Level 4: 11 % to 15 % (for example, steep road grade).
4.9.6.5
Level 5: 16 % and above.
Note 1:
ITSDF B56.5 defines a ramp as “a variation in floor grade in excess of 3 % and of a length where rating data variance is required.” UL 3100 Section 16.1 states “The AGV shall be capable of meeting all requirements for operation and control on an even grade and a sloped grade up to 3 % of grade.”
4.9.7
Undulation (Lack of Flatness on the Apparatus Ground Surface):
4.9.7.1
Flat – 0 mm to 6 mm variation over 3 m.
4.9.7.2
Moderately flat – more than 6 mm to 12 mm variation over 3 m.
4.9.7.3
Non-flat – more than 12 mm to 51 mm variation over 3 m.
4.9.7.4
Outdoor – more than 51 mm variation over 3 m.
4.9.8
Particulates (document type and describe):
4.9.8.1
None (for example, dry, clean).
4.9.8.2
Fine (for example, cardboard dust, concrete dust).
4.9.8.3
Coarse (for example, sand, pebbles).
4.9.9
If more specificity of measurement is required, the following standards may be used:
4.9.9.1
Deformability: ASTM Test Method
E1274
.
4.9.9.2
Undulation: ASTM Test Method
E1155M
.
4.9.9.3
Coefficient of Friction: ANSI B101.3.
4.10
Boundaries:
4.10.1
Boundaries refer to the defining apparatus, existing structure, or ground anomalies, or combinations thereof, within which the A-UGV navigates. The characteristics for boundaries include:
4.10.2
Opaque walls (for example, white drywall, opaque plastic, reflective or flat black test boundaries, corrugated metal, curb from the road).
4.10.3
Semi-transparent walls – (for example, clear glass, frosted glass, translucent plastic).
4.10.4
Negative obstacles (for example, cliff, curb from the sidewalk, loading dock, drainage channel).
4.10.5
Virtual walls (for example, A-UGV prohibited areas mapped within the vehicle controller at edges of pedestrian walkways, edges of negative obstacles, restricted areas).
4.10.6
Porous walls (for example, wire mesh fencing, chain-link fencing).
4.10.7
Elevated dividers (for example, racking, post and beam fencing, retractable-belt dividers).
4.10.8
Building infrastructure (for example, machinery, equipment, A-UGV chargers).
4.10.9
Floor markings (for example, tape, paint).
4.10.10
Mixture of the above boundaries (for example, railing and kickplate in front of a negative drop-off at edge of a platform, post and beam fencing with wire mesh covering).
4.10.11
Moving boundaries (for example, moving sliding or hinged doors, moving curtains); the environment should be labeled as static unless the boundary moves during a test, in which case the environment should be labeled as dynamic, for example, an A-UGV drives past a soft partition that moves or an A-UGV drives through a soft partition that causes it to move.
4.10.12
If more specificity of measurement is required, the following standards and references may be used:
4.10.12.1
Floor Markings:
(1)
Automotive Industry Action Group (AIAG) Occupational Health and Safety OH-2, Pedestrian and Vehicle Safety Guideline (includes description and marking depictions).
(2)
ANSI/ITSDF B56.5 (section 8.11.2 describes Hazardous Zones).
(3)
“Implementation of 5S Quality Tool in Manufacturing Company: A Case Study.”
10