首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM F3427-20
到馆提醒
收藏跟踪
购买正版
Standard Practice for Documenting Environmental Conditions for Utilization with Exoskeleton Test Methods 用外骨骼试验方法记录使用环境条件的标准实施规程
发布日期: 2020-03-01
1.1 在进行测试方法时,重要的是要考虑环境条件在外骨骼安全性和性能测量中的作用。外骨骼设计为在制造商规定的条件下在室内和室外操作。同样,外骨骼的最终用户将在各种环境条件下使用这些外骨骼。当外骨骼制造商和用户执行和复制ASTM委员会F48测试方法时,必须指定和记录外骨骼测试的环境条件,因为环境条件会导致系统性能的变化,尤其是在比较和复制测试结果集时。 在操作过程中考虑环境条件的变化也很重要(例如,条件之间的转换)。因此,本文件中规定的环境条件为静态、动态或过渡,或其组合;外骨骼静止或运动时。本文件简要介绍了以下可能影响外骨骼性能的环境条件列表: 1.1.1 地板或地面; 1.1.2 温度 1.1.3 湿度 1.1.4 大气压力; 1.1.5 照明; 1.1.6 空气流量和质量; 1.1.7 外部传感器发射; 1.1.8 电气干扰; 1.1.9 边界; 1.1.10 随着外骨骼行业应用在这些领域的发展,本标准还可能增加其他类别,例如水下、地外。 1.1.11 然后,本文件将每个条件分解为子类别,以便用户可以在第节中列出的ASTM委员会F48测试方法中定义的外骨骼测试之前,记录与该类别相关的各个方面 2. . 在进行ASTM委员会F48试验方法时,建议记录显著的环境条件。 1.2 中列出的环境条件 1.1 第节描述并参数化了待测试的外骨骼 4. 并为测试方法中的性能比较奠定基础。该方法是将环境条件列表划分为代表主要类别各个方面的子条件(例如,地板和地面内的类型混凝土)。 必要时,本文件还提供了指南(例如,等级和颗粒),以记录现有环境中的环境条件。 1.3 以国际单位制表示的数值应视为标准值。国际单位制后括号中给出的值仅供参考,不被视为标准值。 1.4 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.5 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 4.1 本节描述了第节中列出的环境条件 1. 并描述了每个条件中的子条件。 许多条件和子条件的示例仅供参考。应按照第节的规定评估和记录所述的每种情况 5 – 7. . 4.2 环境一致性:静态、动态、过渡 4.2.1 静态是指整个测试装置中的环境相似。例如,如所示,整个装置的温度波动较小 图1 和 图2 . 动态是指测试装置内的环境显著不同。 例如,当温度在重复之间发生变化时,如所示 图3 . 过渡是指试验装置内不同区域的环境显著不同,如所示 图4 . 这里的目的不是给出具体的指导,而是提供一组特定环境条件的高级分类。如果环境一致性是动态的或过渡的,或两者都是,则报告表单(请参阅第节) 7. )对于每一组独特的环境条件,应完成。 图1 使用温度的静态环境示例 图2 使用温度的静态环境示例,并显示两个静态环境之间的转换 图3 使用温度的动态环境示例,表明环境在测试过程中发生了变化 图4 使用温度的过渡环境示例环境的部分可能保持静态或动态(例如,从冷到冷) 4.3 地板或地面: 4.3.1 外骨骼活动性受地面条件的影响,包括: 表面纹理/粗糙度、可变形性、坡度或缺乏平整度(即起伏)。地面条件会影响外骨骼:牵引力、振动会影响电子设备的完整性、定位和稳定性。 4.3.2 类型: 4.3.2.1 近似类型类似于以下示例,其中可能存在多种地板类型,并应在报告表上注明(例如,混凝土、油毡砖、地毯、泥土、草、沥青、木板等)。 4.3.2.2 指示测试空间内的地板异常(例如,地板格栅、人孔盖、不可检测(通过车辆传感器)的凹口、透明地板等)。 4.3.3 摩擦系数: 4.3.3.1 高(例如,刷涂混凝土、沥青), 4.3.3.2 中等(例如,抛光/密封混凝土、钢板、填充污垢)和 4.3.3.3 低(例如,结冰、潮湿、润滑、干燥的沙子)。 4.3.4 间隙/步长- 可能影响外骨骼使用和性能的已知基础设施(请参阅 图5 ): 4.3.4.1 差距- 相对于参考框架的长度、宽度、深度和间隙角度。 4.3.4.2 步骤- 相对于参考框架的步长、宽度、深度和角度。 4.3.4.3 对于每个间隙/步骤,还应记录间隙/步骤的描述。示例:尖锐间隙(装货码头和卡车之间)与圆形间隙(坑洞、地板凹坑);尖锐台阶(方形通道金属)与圆形台阶(电缆或电缆盖、减速带/驼峰)。尖锐的间隙和圆形的台阶如所示 图5 . 图5 间隙和步长 4.3.5 可变形性: 4.3.5.1 固执的 (例如,混凝土、沥青); 4.3.5.2 半刚性 (例如,压实的泥土或砾石、湿砂、工业地毯); 4.3.5.3 柔软的- 可塑性(例如,雪、泥、干沙、软垫地毯)。 4.3.6 坡度(坡道): 4.3.6.1 1级- 0 % 至3 % (例如,名义上平坦的地板); 4.3.6.2 2级- 4. % 至7 % (例如,工厂中的过渡坡道); 4.3.6.3 3级- 8. % 至10 % (例如,车场坡道=8 % 至9 %); 4.3.6.4 4级- 11 % 至15 % (例如,陡峭的道路坡度); 4.3.6.5 5级- 16 % 及以上。 4.3.7 波动(仪器地面缺乏平整度): 4.3.7.1 扁平- 0 mm至6 mm的变化超过3 m; 4.3.7.2 适度平坦- 3米范围内的变化大于6毫米至12毫米; 4.3.7.3 非平面- 3米范围内的变化超过12毫米至51毫米; 4.3.7.4 室外- 3米范围内变化超过51毫米。 4.3.8 颗粒物(记录类型并描述): 4.3.8.1 无(例如,干燥、清洁); 4.3.8.2 精细(例如,纸板粉尘、混凝土粉尘); 4.3.8.3 粗粒(例如砂、卵石)。 4.3.9 如果需要更具体的测量,可以使用以下标准: 4.3.9.1 可变形性- 见测试方法 E1274 -18. 4.3.9.2 波动- 见测试方法 E1155M -14. 4.3.9.3 摩擦系数- 见ANSI B101.3-2012,其中规定了BOT-3000牵引台车流量计的使用。 4.4 温度: 4.4.1 温度变化和极端情况会影响外骨骼性能。 外骨骼材料也可能对温度发生反应(例如,收缩、熔化、传热)。当外骨骼静止或移动时,外骨骼上的温度暴露可以是静态、动态或过渡,或其组合。温度范围从最低到最高,分为五类。温度变化会影响车载电子设备,产生冷凝,导致液压油粘度,并缩短电池寿命和充电速度。 4.4.2 温度水平(单位为°C): 4.4.2.1 1级- 低于0°(例如,冷冻柜); 4.4.2.2 2级- 0°至15°(例如易腐储存); 4.4.2.3 3级- 16°至26°(例如,办公室、仓库); 4.4.2.4 4级- 27°至49°(例如仓库); 4.4.2.5 5级- 49°以上(例如铸造厂、锻造厂)。 4.5 湿度: 4.5.1 湿度是指外骨骼周围空气中所含的水汽量。高湿度和露点温度会导致冷凝,从而导致电子设备短路并影响其他外骨骼组件。 大于60 % 湿度会导致金属零件的腐蚀大大增加。另一方面,低湿度会导致静电急剧增加,需要充分放电。 4.5.2 相对湿度水平: 4.5.2.1 低- 小于30 %; 4.5.2.2 中等偏低- 31 % 至55 %; 4.5.2.3 中等高- 56 % 至75 %; 4.5.2.4 高- 大于75 %. 4.5.3 露点温度- 空气中的水蒸气凝结成液体露水的最高温度。 4.6 大气压力: 4.6.1 大气压力可能会影响用户或外骨骼,或两者兼有,例如在高海拔地区。大气压力或大气压是由大气重量施加的压力的测量值,或由该表面上方空气重量施加在该表面上的每单位面积的力,该表面在海平面上的平均值为101 kPa。 4.6.2 数量 测量单位为kPa。 4.7 照明: 4.7.1 各种照明条件可能会影响外骨骼材料或反射/吸收或两者,进而影响外骨骼- 使用安全和性能。光源可以包括环境照明,以及与外骨骼应用相关的直接光源。两种照明设置包括应用于外骨骼的环境光源或直接光源。直接照明还可以包括来自高反射表面的反射光,并意味着光源指向受光影响的外骨骼组件(例如,材料、传感器)。间接光或环境光包括光源不直接应用于光源的照明- 受影响的外骨骼组件。光强度分为五个级别,通过黑暗、典型的室内照明和充分的阳光进行演示。 4.7.2 环境照明类型: 4.7.2.1 外露灯泡(例如,荧光灯、can灯); 4.7.2.2 聚光灯(例如,远离外骨骼); 4.7.2.3 阳光(例如,在明亮的阳光下测试外骨骼); 4.7.2.4 反射(例如,灯泡指向天花板); 4.7.2.5 过滤(例如,通过半透明玻璃的漫射光)。 4.7.3 定向照明类型: 4.7.3.1 外露灯泡(即无灯泡盖); 4.7.3.2 聚光灯 4.7.3.3 阳光(例如,外骨骼朝向/移动到低阳光位置); 4.7.3.4 反射; 4.7.3.5 过滤; 4.7.3.6 激光 4.7.3.7 其他车辆发出的光。 4.7.4 环境光源位置- 记录相对于外骨骼的光源位置和标高(参见 图6 ); 在测试方法图纸的适当位置添加一个灯光符号。 4. 7.4.1 相对于外骨骼或外骨骼路径的高程。 4.7.4.2 相对于外骨骼的位置(在试验方法图纸上添加灯光符号;仅用于定向照明)。 图6 照明方向(a)顶视图、(b)侧视图和(c)相对于外骨骼的立面图 4.7.5 照明水平: 4.7.5.1 1级- 0 lx至1 lx(例如,深色); 4.7.5.2 2级- 2 lx至99 lx(例如,dim); 4.7.5.3 3级- 100 lx至1000 lx(例如,办公环境); 4.7.5.4 4级- 1001 lx至9 999 lx(例如,高强度工作灯、聚光灯); 4.7.5.5 5级- 10 000 lx及以上(例如,全光照)。 4.7.6 光谱- 识别原色和峰值波长。 4.7.7 极化- 识别极化源和相对于已知参考(例如,世界坐标)的角度。 4.7.8 如果需要更具体的测量,可以使用以下文件和标准:国家光学天文观测台的“推荐亮度” 8. ,包括普通/推荐的室内/室外照明水平;英国标准,BS 667:2005;和ISO 15469:2004,该标准定义了一组室外日光条件,将日光和天窗连接起来,用于理论和实践目的。 4.8 空气流量和质量: 4.8.1 空气流量和质量是指外骨骼或外骨骼用户(或两者)受空气颗粒物或风(或两者)影响的能力,或车载外骨骼传感器受降水或空气颗粒物(或两者)影响的能力。 空气质量也会影响外骨骼性能,例如传热特性。空气质量可能会影响外骨骼在关节运动或电子和自动外骨骼功能方面的性能,或两者兼而有之。空气质量取决于空气中颗粒的大小和体积密度。为了进行相对比较,平均人眼看不到小于40µm的颗粒,水蒸汽雾通常包括5µm到50µm的颗粒,灰尘颗粒通常为0。 1µm至100µm。一个ISO 1级洁净室在一立方米空气中不超过10个大于0.1µm的颗粒。雾(水蒸气)粒子密度为1 amg,使地面上的人眼可见度约为125 m。 4.8.2 气流速度和方向- 记录相对于外骨骼的气流源位置和标高(参见 图6 ). 4.8.3 空气颗粒密度- (可选)测量空气颗粒大小和体积密度: 4.8.3.1 透明(例如,洁净室,无可见空气颗粒); 4.8.3.2 中等(例如,可见雾、灰尘、小雨/雪/雾); 4.8.3.3 密集(例如,沙尘暴、大雪/雨/雾)。 4.8.4 如果需要更具体的测量,可以使用以下标准:ISO 14644-1:2015空气颗粒密度(clear)和ANSI/IEC 60529-2004。 4.9 外部传感器发射: 4.9.1 外部发射器位于外骨骼外部(例如,来自附近的设备源),可能会干扰外骨骼传感器或控制系统。 外部辐射源可能会影响外骨骼的性能,例如:激光、超声波。 4.9.2 外部发射器配置: 4.9.2.1 发射器类型; 4.9.2.2 发射器数量。 4.9.3 外部发射器源位置- 记录发射器源相对于车辆的位置和高程(参见 图6 ): 4.9.3.1 相对于外骨骼或外骨骼路径的高程; 4.9.3.2 相对于外骨骼或外骨骼路径的位置。 4.9.4 光谱- 识别原色和峰值波长。 4.10 电气干扰: 4.10.1 一些表面的导电性不足以为外骨骼提供足够的接地。外骨骼有一个浮动的地面。随着静电在外骨骼上积聚,蓄电池正极导线和底盘的电压降发生变化,外骨骼的电子部件受到负面影响。强磁场会影响车载电气部件,尤其是车载计算机内的任何数据存储。 外骨骼可能需要无线连接才能实现完整功能和监控。射频干扰会降低这些网络和外骨骼的能力。 4.10.2 有关电磁兼容性问题,请参阅:BS EN 12895、Mil-Stnd-462、IEC 61000-4-1和IEC 61000-6。 4.11 边界: 4.11.1 边界是指测试外骨骼的定义装置、现有结构或地面异常或其组合。边界特征包括: 4.11.2 不透明墙 (例如,白色干墙、不透明塑料、反光或平坦的黑色测试边界、波纹金属、路缘石); 4.11.3 半透明墙 (例如,透明玻璃、磨砂玻璃、半透明塑料); 4.11.4 消极障碍 (例如,悬崖、人行道的路缘、装货码头、排水渠); 4.11.5 虚拟墙 (例如,在楼梯、限制区域的外骨骼控制器内映射的外骨骼禁止区域); 4.11. 6. 多孔壁 (例如,铁丝网围栏、铁丝网围栏); 4.11.7 高架分隔器 (例如,货架、立柱和横梁围栏、可伸缩皮带分隔器); 4.11.8 建筑基础设施 (例如,机械、设备、外骨骼充电器); 4.11.9 地板标记 (例如,胶带、油漆); 4.11.10 上述边界的混合 (例如,平台边缘负落差前的栏杆和踢脚板,带钢丝网覆盖的柱子和梁围栏); 4.11.11 移动边界 (例如,移动滑动门或铰链门、移动窗帘);除非边界在测试过程中移动,否则环境应标记为静态,在这种情况下,环境应标记为动态,例如:外骨骼经过移动的软分区,或外骨骼穿过导致其移动的软分区。如果需要更具体的测量,可以使用以下标准和参考: 4.11.11.1 对于地板标记:行人和车辆安全指南 9 其中包括描述和标记描述,以及5S质量工具在制造公司的实施:案例研究 10 .
1.1 When conducting test methods, it is important to consider the role that the environmental conditions play in measurement of exoskeleton safety and performance. Exoskeletons are designed to be operated both indoors and outdoors under conditions specified by the manufacturer. Likewise, end users of the exoskeletons will be using these exoskeletons in a variety of environmental conditions. When conducting and replicating ASTM Committee F48 test methods by exoskeleton manufacturers and users, it is important to specify and document the environmental conditions under which the exoskeleton is to be tested as there will be variations in system performance caused by the conditions, especially when comparing and replicating sets of test results. It is also important to consider changes in environmental conditions during the course of operations (for example, transitions between conditions). As such, environmental conditions specified in this document are static, dynamic, or transitional, or combinations thereof; with the exoskeleton stationary or in motion. This document provides brief introduction to the following list of environmental conditions that can affect performance of the exoskeleton: 1.1.1 Floor or ground surface; 1.1.2 Temperature; 1.1.3 Humidity; 1.1.4 Atmospheric pressure; 1.1.5 Lighting; 1.1.6 Air flow and quality; 1.1.7 External sensor emission; 1.1.8 Electrical interference; 1.1.9 Boundaries; 1.1.10 Additional categories, for example underwater, extraterrestrial, may also be added to this standard as the exoskeleton industry applications evolve in these areas. 1.1.11 This document then breaks down each condition into sub-categories so that the user can document the various aspects associated with the category prior to exoskeleton tests defined in ASTM Committee F48 test methods listed in Section 2 . It is recommended that salient environment conditions be documented when conducting ASTM Committee F48 test methods. 1.2 The environmental conditions listed in 1.1 to be documented for exoskeleton(s) being tested are described and parameterized in Section 4 and allow a basis for performance comparison in test methods. The approach is to divide the list of environmental conditions into sub-conditions that represent the various aspects of the major category (for example, type-concrete within floor and ground surface). Where necessary, this document also provides guidelines (for example, grade levels and particulates) to document environmental conditions in an existing environment. 1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 This section provides a description of the environmental conditions listed in Section 1 and describes the sub-conditions within each condition. Examples provided for many of the conditions and sub-conditions are provided as guidance only. Each of the conditions described should be evaluated and documented as set forth in Sections 5 – 7 . 4.2 Environment Consistency: Static, Dynamic, Transitional 4.2.1 Static is when the environment is similar throughout the test apparatus. For example, there are minor fluctuations in temperature throughout the apparatus as shown in Fig. 1 and Fig. 2 . Dynamic is when the environment significantly differs within the test apparatus. For example, when the temperature changes between repetitions as shown in Fig. 3 . Transitional is when the environment significantly differs in different areas within the test apparatus as shown in Fig. 4 . The intent here is to not give specific guidance, but to provide a high-level classification of a particular set of environmental conditions. If environment consistency is dynamic or transitional, or both, a report form (see Section 7 ) for each unique set of environmental conditions should be completed. FIG. 1 Example of Static Environment Using Temperature FIG. 2 Example of Static Environment Using Temperature and Showing a Transition Between Two Static Environments FIG. 3 Example of Dynamic Environment Using Temperature and Showing that the Environment Changed During the Test FIG. 4 Example of Transitional Environment Using Temperature Portions of the Environment may Remain Static or may be Dynamic (For example, Cold to Colder) 4.3 Floor or Ground Surface: 4.3.1 Exoskeleton mobility is affected by ground surface conditions including: surface texture/roughness, deformability, slope or lack of flatness (that is, undulation). Ground surface conditions can affect the exoskeleton: traction, vibration affecting the electronics integrity, positioning, and stability. 4.3.2 Type(s): 4.3.2.1 Approximate type similar to the following examples where multiple floor types may be present and shall be indicated on the report form (for example, concrete, linoleum tile, carpet, dirt, grass, asphalt, wood plank, etc.). 4.3.2.2 Indicate floor anomalies within the test space (for example, floor grate, manhole cover, undetectable (by vehicle sensors) divots, transparent flooring, etc.). 4.3.3 Coefficient of Friction: 4.3.3.1 High (for example, brushed concrete, asphalt), 4.3.3.2 Moderate (for example, polished/sealed concrete, steel plates, packed dirt), and 4.3.3.3 Low (for example, icy, wet, lubricated, dry sand). 4.3.4 Gap/Step— Known infrastructure that could affect exoskeleton use and performance (see Fig. 5 ): 4.3.4.1 Gap— Length, width, depth, and angle of gap with respect to a reference frame. 4.3.4.2 Step— Length, width, depth, and angle of step with respect to a reference frame. 4.3.4.3 For each gap/step, a description of the gap/step should also be documented. Examples: sharp gap (between loading dock and truck) vs. rounded gap (pothole, floor divot); sharp step (square channel metal) vs. rounded step (cable or cable cover, speed bump/hump). A sharp gap and a rounded step are exemplified in Fig. 5 . FIG. 5 Gap and Step 4.3.5 Deformability: 4.3.5.1 Rigid (for example, concrete, asphalt); 4.3.5.2 Semi-rigid (for example, compacted dirt or gravel, wet sand, industrial carpet); 4.3.5.3 Soft— Malleable (for example, snow, mud, dry sand, padded carpet). 4.3.6 Grade (ramp): 4.3.6.1 Level 1— 0 % to 3 % (for example, nominally flat floor); 4.3.6.2 Level 2— 4 % to 7 % (for example, transitional ramp in factories); 4.3.6.3 Level 3— 8 % to 10 % (for example, yard ramp = 8 % to 9 %); 4.3.6.4 Level 4— 11 % to 15 % (for example, steep road grade); 4.3.6.5 Level 5— 16 % and above. 4.3.7 Undulation (lack of flatness on the apparatus ground surface): 4.3.7.1 Flat— 0 mm to 6 mm variation over 3 m; 4.3.7.2 Moderately flat— More than 6 mm to 12 mm variation over 3 m; 4.3.7.3 Non-flat— More than 12 mm to 51 mm variation over 3 m; 4.3.7.4 Outdoor— More than 51 mm variation over 3 m. 4.3.8 Particulates (document the type and describe): 4.3.8.1 None (for example, dry, clean); 4.3.8.2 Fine (for example, cardboard dust, concrete dust); 4.3.8.3 Coarse (for example, sand, pebbles). 4.3.9 If more specificity of measurement is required, the following standards may be used: 4.3.9.1 Deformability— See Test Method E1274 -18. 4.3.9.2 Undulation— See Test Method E1155M -14. 4.3.9.3 Coefficient of Friction— See ANSI B101.3 - 2012 which specifies use of a BOT-3000 drag-sled meter. 4.4 Temperature: 4.4.1 Temperature variability and extremes can affect the exoskeleton performance. Exoskeleton materials may also react to temperature (for example, retract, melt, transfer heat). The temperature exposure on the exoskeleton can be static, dynamic, or transitional, or combinations thereof while the exoskeleton is stationary or moving. Temperature ranges span from low to high extremes expressed in five categories. Temperature variations can affect onboard electronics, create condensation, cause hydraulic fluid viscosity, and reduce battery life and recharge rate. 4.4.2 Temperature Levels (in °C): 4.4.2.1 Level 1— Below 0° (for example, freezer); 4.4.2.2 Level 2— 0° to 15° (for example, perishable storage); 4.4.2.3 Level 3— 16° to 26° (for example, office, warehouse); 4.4.2.4 Level 4— 27° to 49° (for example, warehouse); 4.4.2.5 Level 5— Above 49° (for example, foundries, forges). 4.5 Humidity: 4.5.1 Humidity refers to the amount of water vapor contained in the air around the exoskeleton. High humidity combined with dew point temperature causes condensation that can short electronics and affect other exoskeleton components. Greater than 60 % humidity causes a large increase in corrosion of metallic parts. Low humidity, on the other hand, will see a dramatic rise in static electricity and the need for adequate discharge. 4.5.2 Relative Humidity Level: 4.5.2.1 Low— Less than 30 %; 4.5.2.2 Moderately Low— 31 % to 55 %; 4.5.2.3 Moderately High— 56 % to 75 %; 4.5.2.4 High— Greater than 75 %. 4.5.3 Dew Point Temperature— The highest temperature at which airborne water vapor will condense to form liquid dew. 4.6 Atmospheric Pressure: 4.6.1 Atmospheric pressure can potentially affect the user or exoskeleton, or both, for example in high altitude areas. Atmospheric, or barometric, pressure is the measurement of pressure exerted by the weight of the atmosphere, or force per unit area, exerted against a surface by the weight of the air above that surface, which at sea level has a mean value of 101 kPa. 4.6.2 Amount, measured in kPa. 4.7 Lighting: 4.7.1 Various lighting conditions can potentially affect, for example exoskeleton materials or reflectance/absorption, or both, and in turn, exoskeleton-use safety and performance. Lighting sources can include ambient lighting, as well as direct light sources associated with exoskeleton application. Two setups for lighting include ambient or direct source(s) applied to the exoskeleton. Direct lighting can also include reflected light from a highly reflective surface and implies that the source is directed at the light-affected components of the exoskeleton (for example, materials, sensors). Indirect or ambient light includes lighting where the source is not directly applied to the light-affected components of the exoskeleton. Light intensity is divided into five levels exemplified through dark, typical indoor lighting, and full sunlight. 4.7.2 Ambient Lighting Type: 4.7.2.1 Exposed bulb (for example, fluorescent, can lights); 4.7.2.2 Spotlight (for example, directed away from the exoskeleton); 4.7.2.3 Sunlight (for example, the exoskeleton is tested in bright sunlight); 4.7.2.4 Reflected (for example, bulb directed at the ceiling); 4.7.2.5 Filtered (for example, diffused light through translucent glass). 4.7.3 Directed Lighting Type: 4.7.3.1 Exposed bulb (that is, no bulb cover); 4.7.3.2 Spotlight; 4.7.3.3 Sunlight (for example, the exoskeleton faces/moves towards low sun position); 4.7.3.4 Reflected; 4.7.3.5 Filtered; 4.7.3.6 Laser; 4.7.3.7 Light from another vehicle. 4.7.4 Ambient Lighting Source Location— Document light source location and elevation with respect to the exoskeleton (refer to Fig. 6 ); add a light symbol on the test method drawing in the appropriate location. 4.7.4.1 Elevation with respect to the exoskeleton or exoskeleton path. 4.7.4.2 Location with respect to the exoskeleton (add a light symbol on the test method drawing; for directional lighting only). FIG. 6 Lighting Direction (a) Top View, (b) Side View and (c) Elevation View with Respect to the Exoskeleton 4.7.5 Lighting Levels: 4.7.5.1 Level 1— 0 lx to 1 lx (for example, dark); 4.7.5.2 Level 2— 2 lx to 99 lx (for example, dim); 4.7.5.3 Level 3— 100 lx to 1000 lx (for example, office environment); 4.7.5.4 Level 4— 1001 lx to 9 999 lx (for example, high intensity work light, spotlight); 4.7.5.5 Level 5— 10 000 lx and above (for example, full sunlight). 4.7.6 Spectrum— Identify primary color and peak wavelength. 4.7.7 Polarization— Identify the polarizing source and angle with respect to a known reference (for example, world coordinates). 4.7.8 If more specificity of measurement is required, the following documents and standards may be used: “Recommended Light Levels” by National Optical Astronomy Observatory 8 , which includes common/recommended indoor/outdoor light levels; British Standard, BS 667:2005; and ISO 15469:2004, which defines a set of outdoor daylight conditions linking sunlight and skylight for theoretical and practical purposes. 4.8 Air Flow and Quality: 4.8.1 Air flow and quality refers to the ability that an exoskeleton or exoskeleton-user, or both, is affected by air particulates or wind, or both, or that onboard exoskeleton sensor(s) are affected by the presence of precipitation or air particulates, or both. Air quality can also affect exoskeleton performance, for example heat transfer characteristics. Air quality may affect the exoskeleton performance in terms of joint motion or electronics and automatic exoskeleton functionality, or both. Air quality depends upon the size and volumetric density of particulates in the air. For relative comparison, the average human eye cannot see particles smaller than 40 µm, fog from water vapor typically includes particle sizes from 5 µm to 50 µm, and dust particles are typically 0.1 µm to 100 µm. An ISO Class 1 cleanroom has no more than 10 particles larger than 0.1 µm in a cubic meter of air. Fog (water vapor) particle density of 1 amg allows human visibility of about 125 m at ground level. 4.8.2 Air Velocity and Direction— Document air flow source location and elevation with respect to the exoskeleton (refer to Fig. 6 ). 4.8.3 Air Particle Density— Optionally, measure the air particle size and volumetric density: 4.8.3.1 Clear (for example, clean room, no visible air particulates); 4.8.3.2 Moderate (for example, visible fog, dust, light to moderate rain/snow/fog); 4.8.3.3 Dense (for example, dust storm, heavy snow/rain/fog). 4.8.4 If more specificity of measurement is required, the following standards may be used: ISO 14644-1:2015 for air particle density (clear), and ANSI/IEC 60529-2004. 4.9 External Sensor Emission: 4.9.1 External emitters are outside of the exoskeleton (for example, from a nearby equipment source) and can potentially interfere with the exoskeleton sensor or control system. External radiation sources can affect the exoskeleton performance, for example: lasers, ultrasonics. 4.9.2 External Emitter Configuration: 4.9.2.1 Type of emitter(s); 4.9.2.2 Quantity of emitter(s). 4.9.3 External Emitter Source Location— Document emitter source location and elevation with respect to the vehicle (refer to Fig. 6 ): 4.9.3.1 Elevation with respect to exoskeleton or exoskeleton path; 4.9.3.2 Location with respect to the exoskeleton or exoskeleton path. 4.9.4 Spectrum— Identify primary color and peak wavelength. 4.10 Electrical Interference: 4.10.1 Some surfaces are not conductive enough to provide adequate grounding for an exoskeleton. Exoskeletons have a floating ground. As static builds up on the exoskeleton and the voltage drop from the positive lead of the battery and the chassis changes, the electronic components of the exoskeleton are negatively impacted. Strong magnetic fields can impact the onboard electrical components, in particular any data storage within an onboard computer. Exoskeletons may require wireless connections for full functionality and monitoring. Radio frequency (RF) interference can degrade these networks and exoskeleton capability. 4.10.2 For electro-magnetic compatibility issues, refer to: BS EN 12895, Mil-Stnd-462, IEC 61000-4-1, and IEC 61000-6. 4.11 Boundaries: 4.11.1 Boundaries refer to the defining apparatus, existing structure, or ground anomalies, or combinations thereof, within which the exoskeleton is tested. The characteristics for boundaries include: 4.11.2 Opaque Walls (for example, white drywall, opaque plastic, reflective or flat black test boundaries, corrugated metal, curb from the road); 4.11.3 Semi-Transparent Walls (for example, clear glass, frosted glass, translucent plastic); 4.11.4 Negative Obstacles (for example, cliff, curb from the sidewalk, loading dock, drainage channel); 4.11.5 Virtual Walls (for example, exoskeleton prohibited areas mapped within the exoskeleton controller at stairs, restricted areas); 4.11.6 Porous Walls (for example, wire mesh fencing, chain-link fencing); 4.11.7 Elevated Dividers (for example, racking, post and beam fencing, retractable-belt dividers); 4.11.8 Building Infrastructure (for example, machinery, equipment, exoskeleton chargers); 4.11.9 Floor Markings (for example, tape, paint); 4.11.10 Mixture of the Above Boundaries (for example, railing and kickplate in front of a negative drop-off at edge of a platform, post and beam fencing with wire mesh covering); 4.11.11 Moving Boundaries (for example, moving sliding or hinged doors, moving curtains); the environment should be labeled as static unless the boundary moves during a test, in which case the environment should be labeled as dynamic, for example: an exoskeleton moves past a soft partition that moves or an exoskeleton moves through a soft partition that causes it to move. If more specificity of measurement is required, the following standards and references may be used: 4.11.11.1 For floor markings: the Pedestrian and Vehicle Safety Guideline 9 which includes description and marking depictions, and Implementation Of 5S Quality Tool In Manufacturing Company: A Case Study 10 .
分类信息
关联关系
研制信息
归口单位: F48.03
相似标准/计划/法规