1.1
This practice covers a procedure for preparing molybdenum and its alloys for electroplating. The procedure utilizes techniques, equipment, and chemicals that are common to electroplating. Specialized procedures such as hydrogen heat treatment and fused salt pickling are not included. These and other procedures can be found in the references listed at the end of this practice.
1.2
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.3
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
2.1
Molybdenum is used in engineering applications where strength and rigidity of component parts are needed, especially at high temperatures. Its good strength at high temperatures, low vapor pressure, and good impact and creep resistance make it attractive for load-bearing items such as turbine blades, mechanical seals, rocket motor parts, heating elements, and electronic devices. Molybdenum, however, is easily oxidized, and the oxides are not protective. The volatility of the oxides above 800 °C can lead, in the case of unprotected parts, to catastrophic oxidation and to losses in dimensions. Electroplated coatings are applied to molybdenum to prevent oxidation, to prevent seizing and galling, and to assist joining by soldering, brazing, and diffusion bonding.