首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM G207-11(2019)e1
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Indoor Transfer of Calibration from Reference to Field Pyranometers 标准测试方法 用于从参考到现场测辐射计的室内校准传输
发布日期: 2019-06-01
1.1 本标准中描述的方法适用于从基准到现场辐射计的室内校准转移,用于测量和监测室外辐射暴露水平。 1.2 本试验方法适用于现场辐射计,无论采用何种辐射接收器,但仅限于具有约180°(2πSteradian)场角的辐射计。 1.3 本试验方法涵盖的校准使用人工光源(灯)。 1.4 野外辐射计的校准是在传感器水平的情况下进行的(从水平面向地球倾斜0°)。基本要求是,参考辐射计应在校准转移过程中使用的水平倾斜位置进行校准。 1.5 主要参考仪器不得用作现场仪器,其暴露在阳光下的时间应限于室外校准或相互比较。 注1: 在定期进行校准的实验室,建议维护一组包含在每次校准中的两个或三个参考辐射计。这些用作检测标准参考仪器中任何不稳定性或不规则性的控制。 1.6 参考标准仪器的储存方式应确保不会降低其校准性能。 1.7 太阳总日射强度计的校准方法应可通过参考标准仪器的校准方法追溯到世界辐射参考(WRR)(方法 G167页 和试验方法 E816 )窄带和宽带紫外线辐射计的校准方法应可追溯至国家标准与技术研究所(NIST)或其他国际公认的国家标准实验室(Standard) G138页 ). 1.8 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.9 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 所述方法代表了在室内使用标准参考辐射计校准现场辐射计的方法。其他方法包括晴朗天空下的室外自然阳光,以及各种参考辐射计的组合。 在室外,这些方法对于余弦和方位角校正分析很有用,但可能会遇到缺乏可用晴空、前景视图因子和方向性问题。校准的室外传输包含在标准中 G167页 , E816 和 E824 . 5.2 人工源的几种配置是可能的,包括: 5.2.1 传感器暴露在一定距离的点光源(灯)。 5.2.2 传感器暴露的扩展源(灯组或扩散或“均匀化”屏幕后面的灯)。 5.2.3 各种配置的外壳(通常为球形或半球形),内壁由灯具间接照明。传感器暴露在外壳壁发出的辐射下。 5.3 当使用已校准且可追溯到世界辐射基准(WRR)的参考全球日射强度计时,可实现日射强度计校准的可追溯性。 4. 就本试验方法而言,如果校准链中的母仪器可以追溯到参考日射强度计,则应建立可追溯性,该参考日射强度计参与了在瑞士达沃斯世界辐射中心(WRC)进行的国际日射强度比较(IPC)。 5.3.1 参考全球日射强度计(例如,在所有波长下测量半球形太阳辐射的日射强度计)应通过遮光盘、组件总和或室外比较方法与以下仪器之一进行校准: 5.3.1.1 参加世界气象组织(WMO)认可的IPC的绝对空腔太阳热量计(因此具有WRR折减系数)。 5.3.1.2 绝对空腔辐射计与绝对空腔日射强度计会议进行了相互比较(在局部或区域比较中) 5.3.1.1 . 5.3.1.3 或者,参考日射强度计可能已经通过直接从世界气象组织(WMO)的一级日射强度计转移进行校准,该日射强度计是通过阴影圆盘法相对于具有WRR折减系数的绝对空腔日射强度计进行校准的,或直接从WMO标准日射强度计转移(有关太阳辐射计分类的讨论,请参阅WMO指南WMO-8)。见Zerlaut 5. 讨论WRR、IPC及其结果。 注4: 参与上述相互比较且在任何此类相互比较中比较的所有类似仪器平均值±0.5%范围内的任何绝对辐射计应被视为适合作为主要参考仪器。 5.4 窄带(例如,紫外线)辐射计的校准可追溯性是在使用已校准的参考窄带辐射计的方法时实现的,该方法可追溯到国家标准与技术研究所(NIST)或其他国家标准组织。 5.4.1 参考窄带辐射计,无论其测量的是总紫外线太阳辐射,还是窄带UV-A或UV-B辐射,或定义的窄带紫外线辐射段,均应通过以下方式之一进行校准: 5.4.1.1 通过与可追溯到NIST或其他国家的适当国家标准组织的光谱辐照度标准源进行比较,使用适当的滤波器和滤波器校正因子[例如,Drummond 6. ]. 5.4.1.2 通过将辐射计输出与光谱辐射计适当波长段内的积分光谱辐照度进行比较,光谱辐射计本身已根据此类标准光谱辐照度源进行校准。 5.4.1.3 与参与区域或国家光谱辐射计比对的光谱辐射计相比,其结果具有参考质量。 注5: 使用光谱辐射计或通过直接校准光谱辐照度的标准源(例如,氘或1000 W卤钨灯)校准参考紫外线辐射计是标准的主题 G138页 . 5.5 所采用的校准方法假设所用校准源获得的值的准确性适用于部署的环境,由于测井设备和高于校准不确定度的环境影响,存在其他不确定度源。 5.6 辐射计室内校准的主要优点是用户方便、不依赖天气和用户控制测试条件。 5.7 室内校准的主要缺点是自然环境影响和实验室校准条件在源辐射的光谱和空间分布(太阳和天空与灯具或围墙)方面可能存在差异。 5.8 建议参考辐射计与测试辐射计的类型相同,因为仪器之间光谱灵敏度的任何差异都会导致错误校准。然而,只要现场测量中由于光谱响应和光谱失配限制而增加的额外不确定度是可以接受的,就可以接受足够宽带的探测器(约700 nm或以上),例如硅光电二极管探测器相对于极宽带(2000 nm以上)热电堆辐射计的校准。读者可参考ISO TR 9673 7. 和ISO TR 9901 8. 讨论可用仪器的类型及其使用。
1.1 The method described in this standard applies to the indoor transfer of calibration from reference to field radiometers to be used for measuring and monitoring outdoor radiant exposure levels. 1.2 This test method is applicable to field radiometers regardless of the radiation receptor employed but is limited to radiometers having approximately 180° (2π Steradian), field angles. 1.3 The calibration covered by this test method employs the use of artificial light sources (lamps). 1.4 Calibrations of field radiometers are performed with sensors horizontal (at 0° tilt from the horizontal to the earth). The essential requirement is that the reference radiometer shall have been calibrated at horizontal tilt as employed in the transfer of calibration. 1.5 The primary reference instrument shall not be used as a field instrument and its exposure to sunlight shall be limited to outdoor calibration or intercomparisons. Note 1: At a laboratory where calibrations are performed regularly it is advisable to maintain a group of two or three reference radiometers that are included in every calibration. These serve as controls to detect any instability or irregularity in the standard reference instrument. 1.6 Reference standard instruments shall be stored in a manner as to not degrade their calibration. 1.7 The method of calibration specified for total solar pyranometers shall be traceable to the World Radiometric Reference (WRR) through the calibration methods of the reference standard instruments (Method G167 and Test Method E816 ), and the method of calibration specified for narrow- and broad-band ultraviolet radiometers shall be traceable to the National Institute of Standards and Technology (NIST), or other internationally recognized national standards laboratories (Standard G138 ). 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 The methods described represent a means for calibration of field radiometers employing standard reference radiometers indoors. Other methods involve the natural sunlight outdoors under clear skies, and various combinations of reference radiometers. Outdoors, these methods are useful for cosine and azimuth correction analyses but may suffer from a lack of available clear skies, foreground view factor and directionality problems. Outdoor transfer of calibrations is covered by standards G167 , E816 , and E824 . 5.2 Several configurations of artificial sources are possible, including: 5.2.1 Point sources (lamps) at a distance, to which the sensors are exposed. 5.2.2 Extended sources (banks of lamps, or lamp(s) behind diffusing or “homogenizing” screens) to which the sensors are exposed. 5.2.3 Various configurations of enclosures (usually spherical or hemispherical) with the interior walls illuminated indirectly with lamps. The sensors are exposed to the radiation emanating from the enclosure walls. 5.3 Traceability of calibration for pyranometers is accomplished when employing the method using a reference global pyranometer that has been calibrated and is traceable to the World Radiometric Reference (WRR). 4 For the purposes of this test method, traceability shall have been established if a parent instrument in the calibration chain can be traced to a reference pyrheliometer which has participated in an International Pyrheliometric Comparison (IPC) conducted at the World Radiation Center, (WRC), Davos, Switzerland. 5.3.1 The reference global pyranometer (for example, one measuring hemispherical solar radiation at all wavelengths) shall have been calibrated by the shading-disk, component summation, or outdoor comparison method against one of the following instruments: 5.3.1.1 An absolute cavity pyrheliometer that participated in a World Meteorological Organization (WMO) sanctioned IPC's (and therefore possesses a WRR reduction factor). 5.3.1.2 An absolute cavity radiometer that has been intercompared (in a local or regional comparison) with an absolute cavity pyrheliometer meeting 5.3.1.1 . 5.3.1.3 Alternatively, the reference pyranometer may have been calibrated by direct transfer from a World Meteorological Organization (WMO) First Class pyranometer that was calibrated by the shading-disk method against an absolute cavity pyrheliometer possessing a WRR reduction factor, or by direct transfer from a WMO Standard Pyranometer (see WMO's Guide WMO—No. 8 for a discussion of the classification of solar radiometers). See Zerlaut 5 for a discussion of the WRR, the IPC's and their results. Note 4: Any of the absolute radiometers participating in the above intercomparisons and being within ±0.5 % of the mean of all similar instruments compared in any of those intercomparisons, shall be considered suitable as the primary reference instrument. 5.4 Traceability of calibration of narrow band (for example, Ultraviolet) radiometers is accomplished when employing the method using a reference narrow band radiometer that has been calibrated and is traceable to the National Institute of Standards and Technology (NIST), or other national standards organizations. 5.4.1 The reference narrow band radiometer, regardless of whether it measures total ultraviolet solar radiation, or narrowband UV-A or UV-B radiation, or a defined narrow band segment of ultraviolet radiation, shall have been calibrated by one of the following: 5.4.1.1 By comparison to a standard source of spectral irradiance that is traceable to NIST or to the appropriate national standards organizations of other countries using appropriate filters and filter correction factors [for example, Drummond 6 ]. 5.4.1.2 By comparison of the radiometer output to the integrated spectral irradiance in the appropriate wavelength band of a spectroradiometer that has itself been calibrated against such a standard source of spectral irradiance. 5.4.1.3 By comparison to a spectroradiometer that has participated in a regional or national Intercomparison of Spectroradiometers, the results of which are of reference quality. Note 5: The calibration of reference ultraviolet radiometers using a spectroradiometer, or by direct calibration against standard sources of spectral irradiance (for example, deuterium or 1000 W tungsten-halogen lamps) is the subject of Standard G138 . 5.5 The calibration method employed assumes that the accuracy of the values obtained with respect to the calibration source used are applicable to the deployed environment, with additional sources of uncertainty due to logging equipment and environmental effects above and beyond the calibration uncertainty. 5.6 The principal advantages of indoor calibration of radiometers are user convenience, lack of dependence on weather, and user control of test conditions. 5.7 The principal disadvantages of the indoor calibrations are the possible differences between natural environmental influences and the laboratory calibration conditions with respect to the spectral and spatial distribution of the source radiation (sun and sky versus lamps or enclosure walls). 5.8 It is recommended that the reference radiometer be of the same type as the test radiometer, since any difference in spectral sensitivity between instruments will result in erroneous calibrations. However, the calibration of sufficiently broadband detectors (approximately 700 nm or more), such as a silicon photodiode detector with respect to extremely broadband (more than 2000 nm) thermopile radiometers is acceptable, as long as the additional increased uncertainty in the field measurements, due to spectral response and spectral mismatch limitations, is acceptable. The reader is referred to ISO TR 9673 7 and ISO TR 9901 8 for discussions of the types of instruments available and their use.
分类信息
关联关系
研制信息
归口单位: G03.09
相似标准/计划/法规