Standard Test Method for Visualizing Particulate Sizes and Morphology of Particles Contained in Hydrogen Fuel by Microscopy
通过显微镜可视化氢燃料颗粒的颗粒尺寸和形态的标准测试方法
1.1
This test method is primarily intended for visualizing and measuring the sizes and morphology of particulates in hydrogen used as a fuel for fuel cell or internal combustion engine powered vehicles. This test method describes procedures required to obtain size and morphology data of known quality. This test method can be applied to other gaseous samples requiring determination of particulate sizes and morphology provided the user’s data quality objectives are satisfied.
1.2
Mention of trade names in standard does not constitute endorsement or recommendation. Other manufacturers of equipment, software or equipment models can be used.
1.3
The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.5
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
5.1
Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) require high purity hydrogen for maximum material performance and lifetime. The particulates in hydrogen used in FCVs and hydrogen powered internal combustion vehicles may adversely affect pneumatic control components, such as valves or other critical system components. The visualization of the size and morphology of particles is an important tool for determining particle origin as well as for devising particle formation reduction strategies.