首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM D4763-06(2020)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Identification of Chemicals in Water by Fluorescence Spectroscopy 通过荧光光谱法鉴定水中化学品的标准实践
发布日期: 2020-12-15
1.1 本规程允许识别水中或水面层中可能存在的90种化学品。该实践基于使用从美国环境保护局和美国海岸警卫队制定的列表中提取的室温荧光光谱 ( 1. ) . 裁判 ( 1. ) 是这些光谱的主要来源。这种做法也是基于这样的假设,即此类化学品要么存在于水溶液中,要么从水中萃取到适当的溶剂中。 2. 1.2 尽管许多含有芳香环、杂环或扩展共轭双键系统的有机化学品具有可观的荧光量子产率,但这种做法仅适用于所列的特定化合物。如果存在于复杂混合物中,可能需要通过高效液相色谱(HPLC)、柱色谱或薄层色谱(TLC)进行预分离。 1.3 如果与高效液相色谱法一起使用,本规程可用于识别光学多通道分析仪(OMA)或二极管阵列检测器产生的荧光光谱。 1.4 对于简单混合物,或在存在其他非氟化学品的情况下,可能不需要分离技术。本规程中列出的激发和发射最大波长可与标准荧光技术一起使用(见参考文献 ( 2- 6. ) )一旦鉴定确定,对这90种化学物质进行定量。对于此类用途,需要生成校准曲线,以确定每种化学品使用荧光定量的线性范围。可能需要检查溶剂空白以减少或消除任何荧光背景。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。 本标准的用户有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 1.6 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 ====意义和用途====== 5.1 本规程有助于检测和识别(或确定是否存在)荧光产率相对较高的90种化学品(见 表1 ). 最常见的是,这种做法将有助于区分溶液中的单一荧光化学品、简单混合物或存在其他非荧光化学品的单一荧光化学品。 具有高荧光产率的化学品往往具有芳香环、一些杂环或扩展共轭双键系统。此列表中的典型化学品包括芳烃、取代芳烃,如苯酚、多环芳烃(PAH),一些农药,如滴滴涕、多氯联苯(PCB),一些杂环化合物,以及一些酯类、有机酸和酮类。 5.2 通过适当的分离技术(HPLC、TLC和柱色谱法)以及某些情况下的特殊检测技术(OMA和二极管阵列),即使在含有许多其他荧光化学品的复杂混合物中,也可以使用本规程来测定这90种化学品。通过使用适当的激发和发射波长以及之前生成的校准曲线,这种做法可用于在广泛的线性范围内对这些化学品进行定量。 5.3 荧光是一种适当的示踪技术,在较高浓度(大于10至100 ppm)下,可能会观察到光谱畸变,通常是由于自吸收或内部过滤效应,但有时归因于荧光猝灭。这些影响通常可以通过稀释溶液来消除。通过使用更宽的狭缝宽度,可以在识别后降低检测极限,但这可能会导致光谱展宽和失真。 5.4 本规程假设使用校正荧光光谱仪(即能够产生校正荧光光谱的光谱仪)。在未经校正的仪器上,可以观察到峰位移、光谱畸变和峰比的变化。如果要使用的仪器上生成了适当的数据,也可以使用未校正的荧光光谱仪。
1.1 This practice allows for the identification of 90 chemicals that may be found in water or in surface layers on water. This practice is based on the use of room-temperature fluorescence spectra taken from lists developed by the U.S. Environmental Protection Agency and the U.S. Coast Guard ( 1 ) . Ref ( 1 ) is the primary source for these spectra. This practice is also based on the assumption that such chemicals are either present in aqueous solution or are extracted from water into an appropriate solvent. 2 1.2 Although many organic chemicals containing aromatic rings, heterocyclic rings, or extended conjugated double-bond systems have appreciable quantum yields of fluorescence, this practice is designed only for the specific compounds listed. If present in complex mixtures, preseparation by high-performance liquid chromatography (HPLC), column chromatography, or thin-layer chromatography (TLC) would probably be required. 1.3 If used with HPLC, this practice could be used for the identification of fluorescence spectra generated by optical multichannel analyzers (OMA) or diode-array detectors. 1.4 For simple mixtures, or in the presence of other nonfluorescing chemicals, separatory techniques might not be required. The excitation and emission maximum wavelengths listed in this practice could be used with standard fluorescence techniques (see Refs ( 2- 6 ) ) to quantitate these ninety chemicals once identification had been established. For such uses, generation of a calibration curve, to determine the linear range for use of fluorescence quantitation would be required for each chemical. Examination of solvent blanks to subtract or eliminate any fluorescence background would probably be required. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 This practice is useful for detecting and identifying (or determining the absence of) 90 chemicals with relatively high fluorescence yields (see Table 1 ). Most commonly, this practice will be useful for distinguishing single fluorescent chemicals in solution, simple mixtures or single fluorescing chemicals in the presence of other nonfluorescing chemicals. Chemicals with high fluorescence yields tend to have aromatic rings, some heterocyclic rings or extended conjugated double-bond systems. Typical chemicals included on this list include aromatics, substituted aromatics such as phenols, polycyclic aromatic hydrocarbons (PAH’s), some pesticides such as DDT, polychlorinated biphenyls (PCB’s), some heterocyclics, and some esters, organic acids, and ketones. 5.2 With appropriate separatory techniques (HPLC, TLC, and column chromatography) and in some cases, special detection techniques (OMA’s and diode arrays), this practice can be used to determine these 90 chemicals even in complex mixtures containing a number of other fluorescing chemicals. With the use of appropriate excitation and emission wavelengths and prior generation of calibration curves, this practice could be used for quantitation of these chemicals over a broad linear range. 5.3 Fluorescence is appropriately a trace technique and at higher concentrations (greater than 10 to 100 ppm) spectral distortions usually due to self-absorption, or inner-filter effects but sometimes ascribed to fluorescence quenching, may be observed. These effects can usually be eliminated by diluting the solution. Detection limits can be lowered following identification by using broader slit widths, but this may result in spectral broadening and distortion. 5.4 This practice assumes the use of a corrected spectrofluorometer (that is, one capable of producing corrected fluorescence spectra). On an uncorrected instrument, peak shifts and spectral distortions and changes in peak ratios may be noted. An uncorrected spectrofluorometer can also be used if appropriate data is generated on the instrument to be used.
分类信息
关联关系
研制信息
归口单位: D19.06
相似标准/计划/法规
现行
AASHTO R 23-99(2022)
Standard Practice for Chemical, Biological, and Physical Analysis of Water
水的化学、生物和物理分析的标准实施规程
现行
ASTM E1209-18
Standard Practice for Fluorescent Liquid Penetrant Testing Using the Water-Washable Process
用水洗法进行荧光液体渗透检测的标准实施规程
2018-11-01
现行
ASTM D1245-17
Standard Practice for Examination of Water-Formed Deposits by Chemical Microscopy
化学显微镜检查水形沉积物的标准实践
2017-06-01
现行
ASTM D2332-13(2021)
Standard Practice for Analysis of Water-Formed Deposits by Wavelength-Dispersive X-Ray Fluorescence
用波长色散X射线荧光法分析水成沉积物的标准实施规程
2021-12-01
现行
ASTM D934-22
Standard Practices for Identification of Crystalline Compounds in Water-Formed Deposits By X-Ray Diffraction
用X射线衍射法鉴定水成沉积物中结晶化合物的标准实施规程
2022-07-01
现行
ASTM D4799/D4799M-17(2023)
Standard Practice for Accelerated Weathering Test Conditions and Procedures for Bituminous Materials (Fluorescent UV, Water Spray, and Condensation Method)
沥青材料加速老化试验条件和程序的标准实施规程(荧光紫外、喷水和冷凝法)
2023-02-01
现行
ASTM D8332-20
Standard Practice for Collection of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers
高、中、低悬浮物水样的采集 微塑性颗粒和纤维的鉴别和定量用固体
2020-07-15
现行
ASTM D6625-13(2020)
Standard Practice for Conducting a Test of Protective Properties of Polish Applied to a Painted Panel Using Fluorescent UV-Condensation Light- and Water-Exposure Apparatus
使用荧光紫外线冷凝灯和水曝光设备进行对涂漆面板的防腐蚀性能的测试的标准实践
2020-10-01
现行
ASTM D8333-20
Standard Practice for Preparation of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers Using Raman Spectroscopy, IR Spectroscopy, or Pyrolysis-GC/MS
使用拉曼光谱、红外光谱或热解GC/MS对微塑性颗粒和纤维进行识别和定量的高、中或低悬浮固体水样制备的标准实施规程
2020-07-15