首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1448/E1448M-09(2023)
到馆提醒
收藏跟踪
购买正版
Standard Practice for Calibration of Systems Used for Measuring Vehicular Response to Pavement Roughness 用于测量车辆对路面粗糙度响应的系统校准的标准实施规程
发布日期: 2023-03-01
1.1 本规程描述了用于测量车辆对路面粗糙度响应的系统的校准设备和程序。这种系统被称为响应型系统。(见测试方法 第1082页 .) 1.2 响应型系统包括被驱动车辆、驾驶员和车辆内容物、被牵引拖车(如果与该系统一起使用),以及测量车辆对路面粗糙度响应的称为路面测量仪的设备。道路仪表可安装在汽车、厢式货车或牵引拖车中。本规程中涵盖的响应型(道路仪表)装置包括:测量车辆相对轴体运动的装置、测量车身垂直加速度的装置以及测量车辆轴垂直加速度的设备。 1.3 本规程中所述的校准程序仅限于使用规程中所描述的模拟 第170页 . 1.4 本规程不适用于输出不受主车辆响应影响的路面粗糙度测量设备。 1.5 以国际单位制或英寸磅单位表示的数值应单独视为标准值。每个系统中规定的值可能不完全相等;因此,每个系统应独立使用。将两个系统的值合并可能导致不符合标准。 1.6 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会发布的《国际标准、指南和建议制定原则决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 4.1 响应型系统所获得的测量值主要取决于车辆设计和条件、负载、测量速度和一系列环境条件。即使控制了所有重要变量,每辆车的响应也是独一无二的。因此,来自这样一个系统的原始测量不能与其他系统重复。 4.2 本实践中描述的校准提供了一种转换特定响应原始输出的方法- 根据可再现的标准粗糙度标度。 4.2.1 车辆对路面粗糙度的响应是一个复杂的现象,无法在实验室测试中总结。因此,通过与为位于代表性道路上的校准点建立的标准粗糙度指数值的相关性进行校准。分析来自校准点的数据,以确定从RTSN估计标准粗糙度指数的方程式。 4.3 通过变换RTSN进行的标准粗糙度指数估计会受到三种类型的误差: 4.3.1 响应型系统的随机误差(重复性)- 该错误包括操作员错误以及车辆和响应类型系统其他部件响应的可变性。 可以通过使用响应类型系统执行重复测量并对单个测量进行平均以估计站点的真实RTSN来减少这种情况。 附录X1 描述了一种用于确定在用重复性误差大小的测试方法。 注1: 用于估算在用重复性的一个或多个场地的长度应等于响应型系统测量的试验段的最小长度。这可能需要比校准所需的测试场地更长的测试场地。 4.3.2 校准方程中的偏差误差- 如果校准方程不正确或未使用校准方程,则标准粗糙度指数的估计值有偏差。本标准实践的目的是将偏差降至可忽略的水平。 如果需要,可以从校准中收集的数据估计校准后剩余的偏差大小。 4.3.3 估算的标准误差(由于场地效应和响应型系统效应之间的相互作用而产生的误差)- 对于响应类型系统和站点的特定组合,该误差是恒定的(偏差),但在站点选择时是随机的。最终,它限制了用响应型系统估算场地标准粗糙度的准确性。可以根据校准中收集的数据估计误差。 4.3.3.1 估计值的标准误差估计由于特定响应类型系统和标准粗糙度指数之间的物理响应差异而产生的误差。它不能通过数学变换来减少。 4.3.3.2 三个物理变量是可控的,并且影响估计的标准误差,即车辆测试速度、减震器阻尼刚度和车辆轮胎压力。对于大多数车辆,通过采用80 km/h[50 mph]的试验速度、为车辆配备刚性减震器以及保持标准轮胎压力,可获得标准粗糙度指数估计值的最大再现性。(另请参见 8.2 .) 4.4 定期验证对于确保校准保持有效至关重要。
1.1 This practice describes equipment and procedures for the calibration of systems used for measuring vehicular response to pavement roughness. Such systems are referred to as response-type systems. (See Test Method E1082 .) 1.2 The response-type system includes the driven vehicle, the driver and contents of the vehicle, the towed trailer (if one is used with the system), and a device called a road meter that measures the vehicle response to pavement roughness. The road meter may be mounted in an automobile, van, or in a towed trailer. Response-type (road meter) devices covered in this practice include: devices measuring the relative axle-body motion of a vehicle, devices measuring the vertical acceleration of the vehicle body, and devices measuring the vertical acceleration of the vehicle axle. 1.3 The calibration procedures described in this practice are limited to the use of the simulations described in Practice E1170 . 1.4 This practice is not intended to apply to pavement roughness measuring equipment whose output is not influenced by the response of the host vehicle. 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 4.1 Measures obtained by a response-type system depend primarily on the vehicle design and condition, the load, the measuring speed, and a host of environmental conditions. Even with control of all significant variables, the response of every vehicle is unique. Thus, raw measures from such a system are not reproducible with other systems. 4.2 The calibration described in this practice provides a method for converting the raw output of a particular response-type system to a reproducible standard roughness scale. 4.2.1 The response of a vehicle to road roughness is a complex phenomenon that cannot be summarized in a laboratory test. Therefore, the calibration is made through correlation with standard roughness index values established for calibration sites situated on representative roads. The data from the calibration sites are analyzed to determine an equation to estimate the standard roughness index from an RTSN. 4.3 The estimate of the standard roughness index made by transforming an RTSN is subject to three types of error: 4.3.1 Random Error of the Response-Type System (Repeatability)— This error includes operator error and variability in the response of the vehicle and other components of the response-type system. It can be reduced by performing repeated measurements with the response-type system and averaging the individual measurements to estimate the true RTSN for a site. Appendix X1 describes a test method for determining the magnitude of in-use repeatability error. Note 1: The length of the site or sites used to estimate in-use repeatability shall be equal to the minimum length of the test sections to be surveyed by the response-type system. This may require test sites that are longer than those profiled for the calibration. 4.3.2 Bias Error in the Calibration Equation— Estimates of the standard roughness index are biased if the calibration equation is incorrect or if no calibration equation is used. The purpose of this standard practice is to reduce bias to a negligible level. If desired, the magnitude of bias remaining after calibration can be estimated from data collected in the calibration. 4.3.3 Standard Error of the Estimate (Error Due to Interactions Between Site Effects and Response-Type System Effects)— This error is constant (a bias) for a particular combination of response-type system and site, but it is random with site selection. Ultimately it limits the accuracy of the estimate of the standard roughness of a site made with a response-type system. The error can be estimated from data collected in the calibration. 4.3.3.1 The standard error of the estimate estimates the error due to physical differences in response between a particular response-type system and the standard roughness index. It cannot be reduced by a mathematical transform. 4.3.3.2 Three physical variables that are controllable and that influence the standard error of the estimate are vehicle test speed, shock absorber damping stiffness, and vehicle tire pressure. For most vehicles, maximum reproducibility of standard roughness index estimates is obtained by adopting a test speed of 80 km/h [50 mph], by equipping the vehicle with stiff shock absorbers, and by maintaining a standard tire pressure. (See also 8.2 .) 4.4 Periodic verification is essential to ensure that the calibration remains valid.
分类信息
关联关系
研制信息
归口单位: E17.31
相似标准/计划/法规
现行
ASTM F2537-23
Standard Practice for Calibration of Linear Displacement Sensor Systems Used to Measure Micromotion
测量微动用线性位移传感器系统的校准标准实施规程
2023-09-01
现行
ASTM ISO/ASTM51631-20e1
Standard Practice for Use of Calorimetric Dosimetry Systems for Dose Measurements and Routine Dosimetry System Calibration in Electron Beams
电子束剂量测量和常规剂量测定系统校准用量热剂量测定系统的使用标准实施规程
2019-05-15
现行
ISO/ASTM 51631-2020
Practice for use of calorimetric dosimetry systems for dose measurements and dosimetry system calibration in electron beams
电子束中剂量测量和剂量测量系统校准用量热剂量测量系统的使用规程
2020-02-25
现行
ASTM D7282-24
Standard Practice for Setup, Calibration, and Quality Control of Instruments Used for Radioactivity Measurements
放射性测量用仪器的设置、校准和质量控制的标准实施规程
2024-04-01
现行
BS ISO 15568-1998
Practice for use of calorimetric dosimetry systems for electron beam dose measurements and dosimeter calibrations
电子束剂量测量和剂量计校准用量热剂量计系统的使用规程
1999-08-15
现行
BS 12/30251709 DC
BS ISO/ASTM 51631. Practice for use of calorimetric dosimetry systems for electron beam dose measurements and dosimeter calibrations
BS ISO/ASTM 51631 电子束剂量测量和剂量计校准用量热剂量计系统的使用规程
2012-03-19
现行
ASTM F3493-23
Standard Practice for Measuring Dynamic Characteristics of Water Slide Systems Using Instrumented Humans
使用仪器化人体测量水滑梯系统动态特性的标准实施规程
2023-01-01
现行
ASTM E2309/E2309M-20
Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines
材料试验机用位移测量系统和装置的验证
2020-02-01
现行
ASTM F1364-03(2022)
Standard Practice for Use of a Calibration Device to Demonstrate the Inspection Capability of an Interferometric Laser Imaging Nondestructive Tire Inspection System
使用校准装置证明干涉激光成像无损轮胎检测系统的检测能力的标准实施规程
2022-10-01
现行
VDI/VDE 2629 Sheet 2-DRAFT
Draft Document - Accuracy of contour-measuring systems - Characteristics and their checking - Determination of the uncertainty of specific contour measurements using standards/calibrated workpieces
文件草案.轮廓测量系统的精度.特性及其检验.使用标准件/校准件测定特定轮廓测量的不确定度
2008-09-01
现行
AASHTO R 54-14(2022)
Standard Practice for Accepting Pavement Ride Quality When Measured Using Inertial Profiling Systems
当使用惯性轮廓系统测量时 接受路面行驶质量的标准实施规程
现行
ASTM E317-21
Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
不使用电子测量仪器的超声脉冲回波测试仪器和系统的性能特性评估标准实践
2021-06-01
现行
ASTM E2119-24
Standard Practice for Quality Systems for Conducting In Situ Measurements of Lead Content in Paint or Other Coatings Using Field-Portable X-Ray Fluorescence (XRF) Devices
使用现场便携式X射线荧光(XRF)装置进行涂料或其他涂层中铅含量现场测量的质量体系的标准实施规程
2024-04-01