Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
进行实验室间研究以确定试验方法精度的标准实施规程
1.1
本规程描述了试验方法的实验室间研究(ILS)结果的规划、实施、分析和处理技术。本实践中描述的统计技术为制定测试方法的精度声明提供了足够的信息。
1.2
这种做法并不涉及测试方法的开发,而是在开发阶段成功完成后收集测试方法精度声明所需的信息。然而,在实验室间研究中获得的数据可能表明,需要进一步努力来改进测试方法。
1.3
由于本实践的主要目的是开发精度声明所需的信息,因此本实践中的实验设计可能不适合评估材料、仪器或单个实验室。
1.4
应用领域-
这种做法只涉及产生单个数字作为测试结果的测试方法,尽管单个数字可能是一组测量结果的计算结果。
1.4.1
这种做法不包括计量属于分类的方法;然而,出于许多实际目的,可以对分类结果进行评分,例如二进制测量的零一分或整数,例如有序类别的秩,然后可以将测试结果定义为几个个体得分的平均值或其他汇总统计值。
1.5
本标准可能涉及危险材料、操作和设备。本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。
1.6
本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。
====意义和用途======
4.1
ASTM法规要求所有试验方法在重复性和再现性方面的精度说明。这种做法可以用于尽可能简单地获得所需的信息。然后,这些信息可用于根据实践编制精度声明
第177页
当将测试结果与标准值(如规格限值)或数据源(不同的实验室、仪器等)之间进行比较时,测试方法精度的知识在商业和技术工作中是有用的。
).
4.1.1
当将测试方法应用于尽可能相似的材料的大量部分时,所获得的测试结果将不具有相同的值。这些测试结果之间一致程度的衡量标准描述了该材料测试方法的精度。这种测试结果之间可变性的数值测量提供了测试方法精度的反向测量。较大的可变性意味着较小(即较差)的精度和较大的不精确性。
4.1.2
精密度报告为标准差、变异系数(相对标准差)、方差或精密度极限(表明测试结果之间没有统计学显著差异的数据范围)。
4.1.3
这种做法只是为了估计测试方法的精度。然而,当可接受的参考值可用于性能水平时,根据该实践获得的测试结果数据可用于估计测试方法的偏差。
有关偏差估计以及精度、偏差和准确性之间关系的讨论,请参阅实践
第177页
.
4.2
本实践中提出的程序包括三个基本步骤:规划实验室间研究,指导研究的测试阶段,以及分析测试结果数据。
4.2.1
规划阶段包括组建ILS工作组、研究设计、参与实验室的选择和数量、测试材料的选择、材料认证(如适用)以及编写ILS协议。完善的测试方法是必不可少的,因此强烈建议包括坚固性测试,以确定测试方法条件的控制。
注1:
在这种实践中,术语
试验方法
用于实际测量过程和过程的书面描述,而术语
协议
用于指示实验室进行ILS。
4.2.2
测试阶段包括材料准备和分发、与参与实验室的联络以及处理从实验室收到的测试结果数据。
4.2.3
数据分析利用表格、图形和统计诊断工具来评估数据的一致性,以便检测和调查异常值,还包括计算与重复性和再现性有关的测试方法的精度数值。
4.3
本实践中的信息安排如下:
部分
范围
1.
参考文件
2.
术语
3.
意义和用途
4.
测试方法精度的概念
5.
规划实验室间研究(ILS)
部分
ILS会员
6.
基础设计
7.
试验方法
8.
实验室
9
材料
10
每种材料的测试结果数量
11
协议
12
进行ILS的测试阶段
部分
试运行
13
满量程运行
14
统计数据的计算和显示
部分
统计数据的计算
15
统计数据的表格和图形显示
16
数据一致性
部分
标记不一致的结果
17
调查
18
任务组操作
19
葡萄糖ILS一致性
20
精度声明信息
部分
重复性和再现性
21
部分
关键词
22
桌子
桌子
血清中的葡萄糖示例
1–4, 6–8
一致性统计的临界值,
小时
和
k
5.
数字
图形
血清中的葡萄糖示例
1–3
附件
附件
理论考虑因素
附件A1
不平衡数据集ILS统计的计算
附件A2
附录
附录
的电子表格
E691型
计算
附录X1
1.1
This practice describes the techniques for planning, conducting, analyzing, and treating the results of an interlaboratory study (ILS) of a test method. The statistical techniques described in this practice provide adequate information for formulating the precision statement of a test method.
1.2
This practice does not concern itself with the development of test methods but rather with gathering the information needed for a test method precision statement after the development stage has been successfully completed. The data obtained in the interlaboratory study may indicate, however, that further effort is needed to improve the test method.
1.3
Since the primary purpose of this practice is the development of the information needed for a precision statement, the experimental design in this practice may not be optimum for evaluating materials, apparatus, or individual laboratories.
1.4
Field of Application—
This practice is concerned exclusively with test methods which yield a single numerical figure as the test result, although the single figure may be the outcome of a calculation from a set of measurements.
1.4.1
This practice does not cover methods in which the measurement is a categorization; however, for many practical purposes categorical outcomes can be scored, such as zero-one scoring for binary measurements or as integers, ranks for example, for well-ordered categories and then the test result can be defined as an average, or other summary statistic, of several individual scores.
1.5
This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
====== Significance And Use ======
4.1
ASTM regulations require precision statements in all test methods in terms of repeatability and reproducibility. This practice may be used in obtaining the needed information as simply as possible. This information may then be used to prepare a precision statement in accordance with Practice
E177
. Knowledge of the test method precision is useful in commerce and in technical work when comparing test results against standard values (such as specification limits) or between data sources (different laboratories, instruments, etc.).
4.1.1
When a test method is applied to a large number of portions of a material that are as nearly alike as possible, the test results obtained will not all have the same value. A measure of the degree of agreement among these test results describes the precision of the test method for that material. Numerical measures of the variability between such test results provide inverse measures of the precision of the test method. Greater variability implies smaller (that is, poorer) precision and larger imprecision.
4.1.2
Precision is reported as a standard deviation, coefficient of variation (relative standard deviation), variance, or a precision limit (a data range indicating no statistically significant difference between test results).
4.1.3
This practice is designed only to estimate the precision of a test method. However, when accepted reference values are available for the property levels, the test result data obtained according to this practice may be used in estimating the bias of the test method. For a discussion of bias estimation and the relationships between precision, bias, and accuracy, see Practice
E177
.
4.2
The procedures presented in this practice consist of three basic steps: planning the interlaboratory study, guiding the testing phase of the study, and analyzing the test result data.
4.2.1
The planning phase includes forming the ILS task group, the study design, selection, and number of participating laboratories, selection of test materials, material certifications if applicable, and writing the ILS protocol. A well-developed test method is essential, so including a ruggedness test to determine control of test method conditions is highly recommended.
Note 1:
In this practice, the term
test method
is used both for the actual measurement process and for the written description of the process, while the term
protocol
is used for the directions given to the laboratories for conducting the ILS.
4.2.2
The testing phase includes material preparation and distribution, liaison with the participating laboratories, and handling of test result data received from the laboratories.
4.2.3
The data analysis utilizes tabular, graphical, and statistical diagnostic tools for evaluating the consistency of the data so that unusual values may be detected and investigated, and also includes the calculation of the numerical measures of precision of the test method pertaining to repeatability and reproducibility.
4.3
The information in this practice is arranged as follows:
Section
Scope
1
Referenced Documents
2
Terminology
3
Significance and Use
4
Concepts of Test Method Precision
5
Planning the Interlaboratory Study (ILS)
Section
ILS Membership
6
Basic Design
7
Test Method
8
Laboratories
9
Materials
10
Number of Test Results per Material
11
Protocol
12
Conducting the Testing Phase of the ILS
Section
Pilot Run
13
Full Scale Run
14
Calculation and Display of Statistics
Section
Calculation of the Statistics
15
Tabular and Graphical Display of Statistics
16
Data Consistency
Section
Flagging Inconsistent Results
17
Investigation
18
Task Group Actions
19
Glucose ILS Consistency
20
Precision Statement Information
Section
Repeatability and Reproducibility
21
Section
Keywords
22
Tables
Table
Glucose in Serum Example
1–4, 6–8
Critical Values of Consistency Statistics,
h
and
k
5
Figures
Figure
Glucose in Serum Example
1–3
Annexes
Annex
Theoretical Considerations
Annex A1
Calculation of the ILS Statistics for Unbalanced Data Sets
Annex A2
Appendixes
Appendix
Spreadsheet for
E691
Calculations
Appendix X1