首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E1255-23
到馆提醒
收藏跟踪
购买正版
Standard Practice for Radioscopy 放射镜检查的标准实施规程
发布日期: 2023-12-01
1.1 这种做法 2. 涵盖了使用穿透辐射进行放射检查的应用细节,该穿透辐射使用模拟组件,例如用于动态模式放射检查的电光设备(例如,X射线图像增强器(XRII)或模拟相机,或两者)或数字检测器阵列(DDA)。射线透视是一种射线照相技术,可用于( 1. )动态模式射线照相,实时跟踪运动或优化射线照相参数,或同时跟踪(每秒25到30帧)、接近实时(每秒几帧)或高速(每秒数百到数千帧),或( 2. )静态模式射线照相,其中在作为无胶片记录介质的曝光期间对象没有运动。此做法不适用于使用DDA的静态模式放射复制。如果正在使用数字检测器阵列(即数字检测器阵列射线照相术)进行静态射线照相,请使用规程 E2698 . 1.1.1 这种实践也可用于线性检测器阵列(LDA)应用,其中LDA使用被检查的检测器或部件的相对垂直运动来逐行构建图像。 1.1.2 这种做法也可用于“飞点”应用,其中X的铅笔光束- 光线在一个区域上光栅化以逐点构建图像。 1.2 本规程规定了使用X射线或伽马射线对金属和非金属材料进行放射检查的最低要求。由于放射检查所涉及的技术和应用是多种多样的,因此这种做法并非旨在限制或限制,而是为了解决该技术的一般应用,从而促进其使用。请参阅指南 E94 和 E1000 、和术语 E1316 ,提供更多信息和指导。 1.3 应用基础: 1.3.1 本实践和实践的要求 E1411 应一起使用。实践的要求 E1411 将为放射镜系统提供性能鉴定和长期稳定性测试程序。射线透视系统的用户应制定一份书面程序,说明其应用中使用的具体要求和测试,并应在检查生产硬件之前获得3级认可射线照相机构的批准。有以下区域 1.3.1.1 – 1.3.1.14 )在这种实践中,可能需要认可的工程组织和射线照相供应商之间的协议,或认可的工程机构的具体指示。这些项目应在采购订单或合同中说明。 1.3.1.1 不符合本规范的系统、设备和材料( 1.5 ); 1.3.1.2 当使用320 kV以上的伽马源或辐射能量时,修改的测试和/或测量仪( 1.6 ); 1.3.1.3 人员资格和认证( 5.8 ); 1.3.1.4 无损检测供应商资质( 5.9 ); 1.3.1.5 备用图像显示( 6.1.3.1 ); 1.3.1.6 替代图像质量指示器(IQI)类型( 6.1.6.5 ); 1.3.1.7 IQI无要求( 8.9.7 ); 1.3.1.8 检查记录归档、硬拷贝和记录( 6.1.10 ); 1.3.1.9 射线检查质量水平( 8.8.1.16 ); 1.3.1.10 总图像不清晰度( 8.8.1.15 ); 1.3.1.11 性能验证( 9.3 ); 1.3.1.12 口译员的职责和休息时间( 10.2 ); 1.3.1.13 检查报告( 11.1 ); 1.3.1.14 射线照片的保留和储存( 6.1.10 , 8.16 和 11.1 ); 1.3.2 附录X1 可用于履行现有合同 附录X1 或以前的附件A1。删除了以前的强制性附件A1“国防部合同,补充要求”,详细要求现在附加在非强制性附件中 附录X1 . 1.4 本规程还要求用户进行适合其预期目的的技术鉴定,并发布系统鉴定报告(参见 9.7 ).此外,用户应制定特定零件的检查程序(见第节 8. ). 1.5 合规性-- 不符合本规范的系统、设备和材料应获得认知工程组织(CEO)的批准。 1.6 本实践中讨论的一般原理广泛应用于穿透辐射放射系统。但是,本文档是专门为X射线和伽马射线系统而编写的。其他放射系统,如使用中子的系统,将涉及此类系统特有的设备和应用细节。 1.7 本规程的使用者应注意X- 射线能量高于320 keV可能需要修改或不同的方法,而不是本实践中描述的方法。 1.8 单位-- 以国际单位制或英寸磅单位表示的数值应单独视为标准。每个系统中规定的值可能不是完全相等的;因此,每个系统应独立使用。将两个系统的值合并可能导致不符合标准。如适用,国际单位制单位显示在括号[xx]中。 1.9 本标准并不旨在解决与其使用相关的所有安全问题(如有)。 本标准的使用者有责任在使用前制定适当的安全、健康和环境实践,并确定监管限制的适用性。 有关具体的安全声明,请参阅第节 7. . 1.10 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认的标准化原则制定的。 ====意义和用途====== 5.1 与传统射线照相术一样,放射检查广泛适用于穿透辐射束可以穿过并检测的任何材料或检查对象,包括金属、塑料、陶瓷、复合材料和其他非金属材料。除了通常与射线照相术相关的优点外,放射检查可以是一种动态的无膜技术,允许在对象接受检查时操作检查部件并优化成像参数,也可以是一项静态的无膜方法,其中检查部件相对于X轴是静止的- 射线束。具有数字检测器阵列(DDA)或诸如电光设备或模拟相机之类的模拟部件的系统可以在动态模式中使用。如果可实现的视频速率不足以在动态模式下检查感兴趣的特征,则应使用不移动测试对象的平均技术——在这种情况下,如果使用数字检测器阵列,则实践 E2698 应使用。如果与高速相机系统一起使用,则用户必须意识到各种图像转换材料的衰减时间,使得转换器信号的变化可以与帧速率一样快或更快。 如指南所示,线性探测器阵列(LDA)和飞点系统可被视为放射镜配置 E1000 . 5.2 本规程为放射检查方法的应用和控制建立了基本参数。编写本规程是为了在工程图纸、规范或合同中进行规定。 5.3 焊缝检查-- 有关射线焊接检查的其他信息,请参阅《实践》 E1416 . 5.4 铸件检验-- 可在实践中找到有关放射镜铸件检查的其他信息 E1734 . 5.5 电子元件-- 电子元件的射线检查应符合规程 E1161 . 5.6 炸药和推进剂-- 爆炸物/推进剂部件的射线检查应符合规程 E1742 附件A3。 5.7 零件特定检查技术-- 应为每个零件或零件组编制详细的书面程序,包括零件特定的检查技术,并应获得3级认可射线照相机构的批准。 5.8 人员资格-- 对本规程进行射线检查和解释的人员应根据国家或国际公认的无损检测人员资格认证规程或标准进行资格认证,并由雇主或认证机构(如适用)进行认证。 当合同或采购订单上有规定时,可以使用其他等效的资格文件。除非双方之间的合同协议中另有规定,否则适用的修订版应为最新版本。 5.9 机构评估-- 如果合同协议中有规定,则无损检测供应商应符合规范要求并进行评估 E543 .实践的适用修订 E543 应在合同协议中规定。
1.1 This practice 2 covers application details for radioscopic examination using penetrating radiation using an analog component such as an electro-optic device (for example, X-ray image intensifier (XRII) or analog camera, or both) or a Digital Detector Array (DDA) used in dynamic mode radioscopy. Radioscopy is a radiographic technique that can be used in ( 1 ) dynamic mode radioscopy to track motion or optimize radiographic parameters in real-time, or both (25 to 30 frames per second), near real-time (a few frames per second), or high speed (hundreds to thousands of frames per second) or ( 2 ) static mode radioscopy where there is no motion of the object during exposure as a filmless recording medium. This practice is not to be used for static mode radioscopy using DDAs. If static radioscopy using a DDA (that is, DDA radiography) is being performed, use Practice E2698 . 1.1.1 This practice also may be used for Linear Detector Array (LDA) applications where an LDA uses relative perpendicular motion of either the detector or component under examination to build an image line by line. 1.1.2 This practice may also be used for “flying spot” applications where a pencil beam of X-rays rasters over an area to build an image point by point. 1.2 This practice establishes the minimum requirements for radioscopic examination of metallic and non-metallic materials using X-ray or gamma radiation. Since the techniques involved and the applications for radioscopic examination are diverse, this practice is not intended to be limiting or restrictive, but rather to address the general applications of the technology and thereby facilitate its use. Refer to Guides E94 and E1000 , and Terminology E1316 , provide additional information and guidance. 1.3 Basis of Application: 1.3.1 The requirements of this practice and Practice E1411 shall be used together. The requirements of Practice E1411 will provide the performance qualification and long-term stability test procedures for the radioscopic system. The user of the radioscopic system shall establish a written procedure that addresses the specific requirements and tests to be used in their application and shall be approved by the Cognizant Radiographic Level 3 before examination of production hardware. There are areas (listed below 1.3.1.1 – 1.3.1.14 ) in this practice that may require agreement between the cognizant engineering organization and the radioscopy supplier, or specific direction from the cognizant engineering organization. These items should be addressed in the purchase order or the contract. 1.3.1.1 Systems, equipment, and materials that do not comply with this Practice ( 1.5 ); 1.3.1.2 Modified tests and/or gauges when using a gamma source or radiation energy above 320 kV ( 1.6 ); 1.3.1.3 Personnel qualification and certification ( 5.8 ); 1.3.1.4 Qualification of the NDT supplier ( 5.9 ); 1.3.1.5 Alternate image displays ( 6.1.3.1 ); 1.3.1.6 Alternate image quality indicator (IQI) types ( 6.1.6.5 ); 1.3.1.7 Non-requirement for IQI ( 8.9.7 ); 1.3.1.8 Examination record archiving, hard copy, and recording ( 6.1.10 ); 1.3.1.9 Radioscopic quality levels ( 8.8.1.16 ); 1.3.1.10 Total image unsharpness ( 8.8.1.15 ); 1.3.1.11 Performance verification ( 9.3 ); 1.3.1.12 Interpreter duty and rest periods ( 10.2 ); 1.3.1.13 Examination report ( 11.1 ); 1.3.1.14 Retention and storage of radiographs ( 6.1.10 , 8.16 , and 11.1 ); 1.3.2 Appendix X1 may be used to fulfill existing contracts that use Appendix X1 or the former Annex A1. The former mandatory Annex A1 “DEPARTMENT OF DEFENSE CONTRACTS, SUPPLEMENTAL REQUIREMENTS” was deleted and the detailed requirements are appended now in the non-mandatory Appendix X1 . 1.4 This practice also requires the user to perform a technique qualification suitable for its intended purpose and to issue a system qualification report (see 9.7 ). Additionally, the user shall develop part specific inspection procedures (see Section 8 ). 1.5 Compliance— Systems, equipment, and materials that do not comply with this practice shall require approval from the Cognizant Engineering Organization (CEO). 1.6 The general principles discussed in this practice apply broadly to penetrating radiation radioscopic systems. However, this document is written specifically for use with X-ray and gamma-ray systems. Other radioscopic systems, such as those employing neutrons, will involve equipment and application details unique to such systems. 1.7 The user of this practice shall note that X-ray energies higher than 320 keV may require modified or different methods other than those described within this practice. 1.8 Units— The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Where applicable, SI units are shown in brackets [xx]. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific safety statements, see Section 7 . 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 As with conventional radiography, radioscopic examination is broadly applicable to any material or examination object through which a beam of penetrating radiation may be passed and detected including metals, plastics, ceramics, composites, and other nonmetallic materials. In addition to the benefits normally associated with radiography, radioscopic examination may be either a dynamic, filmless technique allowing the examination part to be manipulated and imaging parameters optimized while the object is undergoing examination, or a static, filmless technique wherein the examination part is stationary with respect to the X-ray beam. Systems with digital detector arrays (DDAs) or an analog component such as an electro-optic device or an analog camera may be used in dynamic mode. If achievable video rates are not adequate to examine features of interest in dynamic mode then averaging techniques with no movement of the test object shall be used – in this case, if using a DDA, Practice E2698 shall be used. If used with a high speed camera system, the user must be aware of the various image conversion materials decay time such that the converter signal can change as fast or faster than the frame rate. Linear Detector Arrays (LDAs) and flying spot systems may be considered radioscopic configurations as they are included in as shown in Guide E1000 . 5.2 This practice establishes the basic parameters for the application and control of the radioscopic examination method. This practice is written so it can be specified on the engineering drawing, specification, or contract. 5.3 Weld Examination— Additional information on radioscopic weld examination may be found in Practice E1416 . 5.4 Casting Examination— Additional information on radioscopic casting examination may be found in Practice E1734 . 5.5 Electronic Components— Radioscopic examination of electronic components shall comply with Practice E1161 . 5.6 Explosives and Propellants— Radioscopic examination of explosives/propellant components shall comply with Practice E1742 Annex A3. 5.7 Part-Specific Examination Technique— A detailed written procedure including a part-specific examination technique shall be prepared for each part, or group of parts, and shall be approved by the Cognizant Radiographic Level 3. 5.8 Personnel Qualification— Personnel performing radioscopic examinations and interpretations to this practice shall be qualified in accordance with a nationally or internationally recognized NDT personnel qualification practice or standard and certified by the employer or certifying agency as applicable. Other equivalent qualification documents may be used when specified on the contract or purchase order. The applicable revision shall be the latest unless otherwise specified in the contractual agreement between parties. 5.9 Agency Evaluation— If specified in the contractual agreement, the NDT supplier shall be qualified and evaluated in accordance with Practice E543 . The applicable revision of Practice E543 shall be specified in the contractual agreement.
分类信息
关联关系
研制信息
归口单位: E07.01
相似标准/计划/法规
现行
ASTM E1000-24
Standard Guide for Radioscopy
射线透视标准指南
2024-06-01
现行
ASTM E2002-22
Standard Practice for Determining Image Unsharpness and Basic Spatial Resolution in Radiography and Radioscopy
射线照相和射线照相中测定图像不清晰度和基本空间分辨率的标准实施规程
2022-02-01
现行
ASTM E3388-23
Standard Practice for Determining Image Unsharpness and Basic Spatial Resolution in Radiography and Radioscopy for High Energy Applications
高能应用射线照相和射线透视中图像不清晰度和基本空间分辨率测定的标准实施规程
2023-06-15
现行
ASTM F3099-23
Standard Practices for Parasailing
寄生的标准实施规程
2023-07-01
现行
PFI ES44
Drafting Practices Standard
起草惯例标准
1997-01-01
现行
ASTM F1877-24
Standard Practice for Characterization of Particles
颗粒表征的标准实践
2024-10-01
现行
ASTM F2123-23
Standard Practice for Treestand Instructions
Treestand指令的标准实施规程
2023-11-01
现行
ASTM F2575-23e2
Standard Practice for Language Translation
语言翻译标准实施规程
2023-01-01
现行
ASTM E3257-21
Standard Practice for Asset Taxonomy
资产分类的标准实施规程
2021-08-01
现行
ASTM E3020-22
Standard Practice for Ignition Sources
点火源的标准实施规程
2022-02-01
现行
ASTM D5633-21
Standard Practice for Sampling with a Scoop
用勺子取样的标准做法
2021-05-01
现行
MIL MIL-STD-2073-1E Change 3
STANDARD PRACTICE FOR MILITARY PACKAGING
军用包装标准实施规程
2018-11-20
现行
SAE 1010A
Standard Practice for Manpower and Personnel
人力和人员的标准实施规程
2023-12-13
现行
ASTM E3210-20
Standard Practice for Infrastructure Management
基础设施管理的标准实施规程
2020-07-01
现行
ASTM F3168-23
Standard Practice for Hayride Attractions
干草游乐设施的标准实施规程
2023-03-15
现行
ASTM F3432-20a
Standard Practice for Powerplant Instruments
动力装置仪表的标准实施规程
2020-11-01
现行
ASTM D4296-24a
Standard Practice for Sampling Pitch
沥青取样的标准实施规程
2024-05-01
现行
ASTM D6193-16(2020)
Standard Practice for Stitches and Seams
缝线和接缝的标准实施规程
2020-07-01
现行
ASTM D3951-18(2023)
Standard Practice for Commercial Packaging
商业包装标准实施规程
2023-10-01
现行
ASTM D75/D75M-19
Standard Practice for Sampling Aggregates
采样聚集体的标准实践
2019-11-01