首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
历史 ASTM E991-16
到馆提醒
收藏跟踪
购买正版
Standard Practice for Color Measurement of Fluorescent Specimens Using the One-Monochromator Method 使用单色荧光法进行荧光标本颜色测量的标准实践
发布日期: 2016-11-01
1.1 本规程适用于由近紫外线和可见光辐射激发的荧光样品的仪器颜色测量,该辐射导致可见光范围内的荧光发射。它不适用于其他类型的光致发光材料,如磷光、化学发光或电致发光,也不适用于测量化学分析的荧光特性。 1.2 本实施规程描述了当模拟日光照射近似CIE标准光源D65(CIE D65)时,荧光样品颜色测量所需的仪器测量要求、校准程序和材料标准。 1.3 本规程的范围仅限于提供样品连续宽带多色照明的比色光谱仪,并且仅使用观察单色仪来分析离开样品的辐射。 1.4 本规程可用于计算CIE 1931标准色度观察器或CIE 1964补充标准色度观察器的CIE颜色系统中荧光颜色的总三色刺激值和总色度坐标。 1.5 本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全和健康实践,并确定监管限制的适用性。 ====意义和用途====== 5.1 获得CIE三刺激值或通过其转换获得其他用于描述荧光物体颜色的坐标的最常用方法是使用在定义和控制的照明和观看条件下获得的光谱数据。本实施规程描述了测量由近似CIE D65的模拟日光照射的荧光样品的总光谱辐射因子以及计算CIE 1931或1964观察者的总三色刺激值和总色度坐标所需的仪器测量要求、校准程序和材料标准。 5.2 荧光样品的精确比色法要求照明样品的仪器光源的光谱分布与用于计算三色刺激值的比色光源(本实施例中为CIE D65)非常相似。该要求的基本依据来自荧光样品的定义特性:通过吸收辐射能(η)产生的电子激发产生的瞬时光发射,其中发射波长(λ)通常长于激发波长 ( 1. ). 7. 对于荧光样本,用于计算三刺激值的总光谱辐射因子是两个分量的总和——普通反射因子β(λ) S ,和荧光因子β(η,λ) F : β(λ) = β(λ) S + β(η,λ) F . 普通光谱反射率因子仅是样品在观察波长(λ)下的反射辐射效率的函数,与照明的光谱分布无关。观察波长(λ)处的光谱荧光辐射因子值直接随激发范围(η)内照明的绝对光谱分布而变化,因此总光谱辐射因子和导出的色度值也会发生变化。本规程中使用的单色仪色度分光计通常设计用于普通(非- 荧光)样品及其测量荧光样品颜色的精度直接取决于仪器照明模拟CIE D65的程度。 5.3 CIE D65是一种虚拟光源,在数值上定义了日光的标准光谱照明分布,而不是物理光源 ( 2. ) . 对于与CIE D65相对应的标准源,CIE没有建议,也没有一种标准化方法来评定荧光样本的通用仪器比色法的CIE D65仪器模拟的质量(或充分性)。CIE D65的仪器模拟等级应不低于BB(CIELAB)的要求,由CIE发布方法确定 51经常被引用。 然而,CIE的方法 51仅适用于为CIE 1964(10°)观察者评估的紫外线激发样本。CIE中描述的方法 51是为紫外线激活荧光白开发的,尚未证明适用于可见光激活荧光样本。 注1: 仪器灯在正常使用时会老化,导致样品上的光谱分布和照明强度随时间发生变化。建议测量样本端口处的照明光谱分布,并定期评估CIE D65模拟的充分性。 5.4 仪器型号之间样品上绝对光谱辐照度分布的差异可能会导致荧光样品测量颜色值的显著变化,并导致再现性差 ( 3. ) . 为了在样品上充分再现最大测量再现性所需的光谱辐照度,买方和卖方可能需要指定一个单一型号的仪器。 5.5 本规程主要用于彩色荧光样品的仪器测色。虽然不排除使用本规程测量荧光白的颜色,但其他标准更常用于测量这些类型的样本 ( 4. , 5. , 6. ) (见试验方法 D985 ,ISO 11475,ISO 2469和TAPPI T 571). 5.6 对于几何敏感荧光样品,用户必须明确定义轴上的角度公差和角度孔径尺寸,以确保足够的重复性和再现性。 工程表面和光学材料(例如反光膜)的测量结果的显著变化可能是由于仪器之间照明和观察的绝对轴角度以及孔径的绝对尺寸的差异造成的 ( 7. ) . 为了在仪器之间复制最大测量再现性所需的测量几何形状、绝对角度和角度公差,可能需要指定一个单一型号的仪器供买方和卖方使用。 注2: 为了确保在测量具有中等光泽的样品、配方或反光样品时仪器之间的一致性,需要对仪器轴角和仪器孔径角进行严格的几何公差。 5.7 本实践建议采用双向(45:0或0:45)几何形状。 5.7.1 不推荐使用积分球的半球几何形状,因为荧光样品发射的辐射从球壁反射并重新照亮样品,从而改变样品上的光谱照度分布,从而改变原始仪器源的光谱照度分布,从而产生光谱球误差 ( 8. ) . 注3: 随着球体内部面积与测量面积之比的增加,与半球几何形状相关的光谱球体误差减小。当光谱球误差可忽略不计时,在特定测量条件下,使用半球几何形状获得的结果可能接近使用45: 0几何体 ( 9 ) . 5.8 本规程提供了选择用于提供所需精度数据的光谱仪工作参数的程序。它还通过伪影标准和选择合适的样本来进行仪器校准,以获得测量精度。 5.9 当需要高水平的重复性和再现性时,应使用具有45:0或0:45照明和观察几何形状的双向光学测量系统的双谱比色法。双谱或双单色仪法是测定荧光样品一般辐射传输特性的确定方法。 双谱方法被接受为获得荧光样本上与光源无关的光度数据的参考程序,该数据可用于计算任何所需光源和观察者的颜色。双谱方法的优点是避免了与源模拟和各种近似方法相关的不精确性 ( 10 , 11 )(参见实践 E2152 , E2153 ,以及试验方法 E2301 ).
1.1 This practice applies to the instrumental color measurement of fluorescent specimens excited by near ultraviolet and visible radiation that results in fluorescent emission within the visible range. It is not intended for other types of photoluminescent materials such as phosphorescent, chemiluminescent, or electroluminescent, nor is this practice intended for the measurement of the fluorescent properties for chemical analysis. 1.2 This practice describes the instrumental measurement requirements, calibration procedures, and material standards needed for the color measurement of fluorescent specimens when illuminated by simulated daylight approximating CIE Standard Illuminant D65 (CIE D65). 1.3 This practice is limited in scope to colorimetric spectrometers providing continuous broadband polychromatic illumination of the specimen and employing only a viewing monochromator for analyzing the radiation leaving the specimen. 1.4 This practice can be used for calculating total tristimulus values and total chromaticity coordinates for fluorescent colors in the CIE Color System for either the CIE 1931 Standard Colorimetric Observer or the CIE 1964 Supplementary Standard Colorimetric Observer. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. ====== Significance And Use ====== 5.1 The most general method for obtaining CIE tristimulus values or, through their transformation, other coordinates for describing the colors of fluorescent objects is by the use of spectrometric data obtained under defined and controlled conditions of illumination and viewing. This practice describes the instrumental measurement requirements, calibration procedures, and material standards needed for measuring the total spectral radiance factors of fluorescent specimens illuminated by simulated daylight approximating CIE D65 and calculating total tristimulus values and total chromaticity coordinates for either the CIE 1931 or 1964 observers. 5.2 The precise colorimetry of fluorescent specimens requires the spectral distribution of the instrument light source illuminating the specimen closely duplicate the colorimetric illuminant used for the calculation of tristimulus values, which is CIE D65 in this practice. The fundamental basis for this requirement follows from the defining property of a fluorescent specimen: instantaneous light emission resulting from electronic excitation by absorption of radiant energy (η) where the wavelengths of emission (λ) are as a rule longer than the excitation wavelengths ( 1 ). 7 For a fluorescent specimen, the total spectral radiance factors used to calculate tristimulus values are the sum of two components – an ordinary reflectance factor, β(λ) S , and a fluorescence factor, β(η,λ) F : β(λ) = β(λ) S + β(η,λ) F . Ordinary spectral reflectance factors are solely a function of the specimen's reflected radiance efficiency at the viewing wavelength (λ) and independent of the spectral distribution of the illumination. The values of the spectral fluorescent radiance factors at the viewing wavelength (λ) vary directly with the absolute spectral distribution of illumination within the excitation range (η), and consequently so will the total spectral radiance factors and derived colorimetric values. One-monochromator colorimetric spectrometers used in this practice are generally designed for the color measurement of ordinary (non-fluorescent) specimens and the precision with which they can measure the color of fluorescent specimens is directly dependent on how well the instrument illumination simulates CIE D65. 5.3 CIE D65 is a virtual illuminant that numerically defines a standardized spectral illumination distribution for daylight and not a physical light source ( 2 ) . There is no CIE recommendation for a standard source corresponding to CIE D65 nor is there a standardized method for rating the quality (or adequacy) of an instrument's simulation of CIE D65 for the general instrumental colorimetry of fluorescent specimens. The requirement that the instrument simulation of CIE D65 shall have a rating not worse than BB (CIELAB) as determined by the method of CIE Publication 51 has often been referenced. However, the method of CIE 51 is only suitable for ultraviolet-excited specimens evaluated for the CIE 1964 (10°) observer. The methods described in CIE 51 were developed for UV activated fluorescent whites and have not been proven to be applicable to visible-activated fluorescent specimens. Note 1: Aging of the instrument lamp will occur with normal usage resulting in changes in the spectral distribution and intensity of the illumination on the specimen over time. Measurement of the spectral distribution of the illumination at the sample port and evaluation of the adequacy of the CIE D65 simulation at regular intervals are recommended. 5.4 Differences in the absolute spectral irradiance distribution on the specimen between instrument models can produce significant variation in the measured color values of fluorescent specimens and result in poor reproducibility ( 3 ) . In order to reproduce adequately the spectral irradiance on the specimen required for maximum measurement reproducibility, it may be necessary for a single model of instrument to be specified for use by both buyer and seller. 5.5 This practice is primarily for the instrumental color measurement of chromatic fluorescent specimens. While use of this practice for the color measurement of fluorescent whites is not precluded, other standards are more commonly used for measurement of these types of specimens ( 4 , 5 , 6 ) (see Test Methods D985 , ISO 11475, ISO 2469, and TAPPI T 571). 5.6 For geometrically sensitive fluorescent specimens angular tolerances on the axes and the angular aperture sizes must be well defined by the user to ensure adequate repeatability and reproducibility. Significant variation in measurement results for engineered surfaces and optical materials, for example retroreflective sheeting, can result from differences in the absolute axis angles of illumination and viewing and absolute size of the apertures between instruments ( 7 ) . In order to replicate the measurement geometry, absolute angles and angular tolerances between instruments that is required for maximum measurement reproducibility, it may be necessary for a single model of instrument to be specified for use by both buyer and seller. Note 2: To ensure inter-instrument agreement in the measurement of specimens with intermediate gloss, for formulation, or retroreflective specimens, tight geometric tolerances are required of the instrument axis angles and the instrument aperture angles. 5.7 Bidirectional (45:0 or 0:45) geometry is recommended for this practice. 5.7.1 Hemispherical geometry using an integrating sphere is not recommended because of the spectral sphere error resulting from radiation emitted by the fluorescent specimen reflecting off the sphere wall and re-illuminating the specimen, thereby changing the spectral illuminance distribution on the specimen from that of the original instrument source ( 8 ) . Note 3: The spectral sphere error associated with hemispherical geometry decreases as the ratio of the internal area of the sphere to the measurement area increases. When the spectral sphere error is negligible, results obtained using hemispherical geometry may for some specimens under specific measurement conditions approach those obtained using 45:0 geometry ( 9 ) . 5.8 This practice provides procedures for selecting the operating parameters of spectrometers used for providing data of the desired precision. It also provides for instrument calibration by means of artifact standards and selection of suitable specimens for obtaining precision in the measurements. 5.9 Bispectral colorimetry using a bidirectional optical measuring system with a 45:0 or 0:45 illuminating and viewing geometry should be used when a high level of repeatability and reproducibility are required. The bispectral, or two-monochromator, method is the definitive method for the determination of the general radiation-transfer properties of fluorescent specimens. The bispectral method is accepted as the referee procedure for obtaining illuminant-independent photometric data on a fluorescent specimen that can be used to calculate its color for any desired illuminant and observer. The advantage of the bispectral method is that it avoids the inaccuracies associated with source simulation and various methods of approximation ( 10 , 11 ) (see Practices E2152 , E2153 , and Test Method E2301 ).
分类信息
关联关系
研制信息
归口单位: E12.05
相似标准/计划/法规
现行
ASTM E991-21
Standard Practice for Color Measurement of Fluorescent Specimens Using the One-Monochromator Method
用单色仪法测量荧光样品颜色的标准实施规程
2021-06-01
现行
ASTM E1247-12(2023)
Standard Practice for Detecting Fluorescence in Object-Color Specimens by Spectrophotometry
用分光光度法检测物体颜色样品中荧光的标准实施规程
2023-11-01
现行
ASTM E1345-24
Standard Practice for Reducing the Effect of Variability of Color Measurement by Use of Multiple Measurements
用多次测量减少颜色测量变化影响的标准实施规程
2024-06-15
现行
ASTM E3022-18
Standard Practice for Measurement of Emission Characteristics and Requirements for LED UV-A Lamps Used in Fluorescent Penetrant and Magnetic Particle Testing
荧光渗透剂和磁粉检测用LED紫外灯发射特性和要求的测量
2018-07-01
现行
ASTM C1919-22
Standard Practice for Measurement of the Steady-State Thermal Transmission Properties of Small Specimens Using the Heat Flow Meter Apparatus
用热流计装置测量小试样稳态热传输特性的标准实施规程
2022-12-01
现行
ASTM C341/C341M-24
Standard Practice for Preparation and Conditioning of Cast, Drilled, or Sawed Specimens of Hydraulic-Cement Mortar and Concrete Used for Length Change Measurements
用于长度变化测量的水硬性水泥砂浆和混凝土的铸造、钻孔或锯切试样的制备和调节的标准规程
2024-07-01
现行
ASTM E2119-24
Standard Practice for Quality Systems for Conducting In Situ Measurements of Lead Content in Paint or Other Coatings Using Field-Portable X-Ray Fluorescence (XRF) Devices
使用现场便携式X射线荧光(XRF)装置进行涂料或其他涂层中铅含量现场测量的质量体系的标准实施规程
2024-04-01