首页 馆藏资源 舆情信息 标准服务 科研活动 关于我们
现行 ASTM E384-22
到馆提醒
收藏跟踪
购买正版
Standard Test Method for Microindentation Hardness of Materials 材料显微压痕硬度的标准试验方法
发布日期: 2022-10-01
1.1 本试验方法包括测定材料的显微压痕硬度。 1.2 本试验方法包括在9.8×10 -3 至9.8 N(1至1000 gf)。 1.3 该测试方法包括分析显微压痕测试过程中可能出现的误差来源,以及这些因素如何影响测试结果的精度、偏差、重复性和再现性。 1.4 有关试验机直接验证和校准要求以及维氏和努氏参考硬度试块制造和校准要求的信息,请参见《试验方法》 E92型 . 注1: 虽然E04委员会主要关注金属,但所述测试程序适用于其他材料。 1.5 单位- 以国际单位表示的值应视为标准值。本标准不包括其他计量单位。 1.6 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全、健康和环境实践,并确定监管限制的适用性。 1.7 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确立的国际公认标准化原则制定的。 =====意义和用途====== 5.1 硬度测试已被发现对材料评估、制造过程的质量控制以及研发工作非常有用。 硬度,虽然本质上是经验的,但可以与许多金属和合金的抗拉强度相关,也是可加工性、耐磨性、韧性和延展性的指标。 5.2 显微压痕试验用于评估和量化小距离内发生的硬度变化。这些变化可能是有意的,例如通过局部表面硬化产生的,例如,通过喷丸、冷拔、火焰硬化、感应硬化等,或通过渗碳、氮化、碳氮共渗等工艺产生的。;或者,它们可能是由于诸如脱碳、使用中的局部软化或成分/微观结构偏析问题等问题导致的无意变化。低测试力也会将硬度测试扩展到对于宏观压痕测试而言太薄或太小的材料。 显微压痕试验允许对特定相或成分、区域或梯度进行硬度试验,这些区域或梯度太小,无法通过宏观压痕试验进行评估。 5.3 由于显微压痕硬度测试将揭示大多数材料中普遍存在的硬度变化,因此单个测试值可能不能代表整体硬度。1000 gf下的维氏试验可用于测定整体硬度,但对于任何硬度试验,建议根据需要或要求进行多次压痕,并计算平均值和标准偏差。 5.4 显微压痕硬度测试通常用于量化小距离内发生的硬度变化。要确定这些差异,需要非常小的物理压痕。在非常低的测试力下产生凹痕的测试仪必须仔细构造,以准确地在所需位置施加测试力,并且必须具有高- 高质量光学系统,精确测量小凹痕的对角线(或对角线)。在中定义的力范围的上限范围内测试力 1.2 可用于评估整体硬度。一般来说,维氏压头更适合于测定整体(平均)性能,因为维氏硬度不会因试验力的选择而改变,从25 gf至1000gf,因为压痕几何形状是压痕深度的函数。然而,努氏压痕在几何形状上与深度的函数不相同,努硬度会发生变化,特别是在1.2中规定的力范围内(且高于该范围),试验力<200 gf时;因此,努氏硬度通常不用于定义整体硬度,但在500 gf时除外 电子140 给出了其他测试尺度的换算,努氏测试不应在1000 gf以上的测试力下进行。 大多数表面硬度变化的努氏试验是在100 gf至500 gf。如果进行试验以满足规定的整体硬度值,如HRC,则大多数此类试验将在500 gf载荷下使用努氏硬度进行。由于长和短努氏对角线之间的差异很大,努氏压头通常比维氏压头更适合在很小的距离内测定硬度变化。力下的维氏和努氏试验 ≤ 25 gf容易不精确,因为很难用光学显微镜以高精度和再现性测量极小的凹痕(<20µm)。在力作用下进行的试验 ≤ 25 gf应被认为是定性的。同样,应尽可能避免产生长度小于20µm的压痕的试验力,并应将其视为定性的。 试样制备程序在消除制备引起的损伤方面的成功可以并且将影响测试结果;随着测试力的减小,这个问题变得更加关键。
1.1 This test method covers determination of the microindentation hardness of materials. 1.2 This test method covers microindentation tests made with Knoop and Vickers indenters under test forces in the range from 9.8 × 10 -3 to 9.8 N (1 to 1000 gf). 1.3 This test method includes an analysis of the possible sources of errors that can occur during microindentation testing and how these factors affect the precision, bias, repeatability, and reproducibility of test results. 1.4 Information pertaining to the requirements for direct verification and calibration of the testing machine and the requirements for the manufacture and calibration of Vickers and Knoop reference hardness test blocks are in Test Method E92 . Note 1: While Committee E04 is primarily concerned with metals, the test procedures described are applicable to other materials. 1.5 Units— The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ====== 5.1 Hardness tests have been found to be very useful for materials evaluation, quality control of manufacturing processes and research and development efforts. Hardness, although empirical in nature, can be correlated to tensile strength for many metals and alloys, and is also an indicator of machinability, wear resistance, toughness and ductility. 5.2 Microindentation tests are utilized to evaluate and quantify hardness variations that occur over a small distance. These variations may be intentional, such as produced by localized surface hardening, for example, from shot blasting, cold drawing, flame hardening, induction hardening, etc., or from processes such as carburization, nitriding, carbonitriding, etc.; or, they may be unintentional variations due to problems, such as decarburization, localized softening in service, or from compositional/microstructural segregation problems. Low test forces also extend hardness testing to materials too thin or too small for macroindentation tests. Microindentation tests permit hardness testing of specific phases or constituents and regions or gradients too small for evaluation by macroindentation tests. 5.3 Because microindentation hardness tests will reveal hardness variations that commonly exist within most materials, a single test value may not be representative of the bulk hardness. Vickers tests at 1000 gf can be utilized for determination of the bulk hardness, but, as for any hardness test, it is recommended that a number of indents are made and the average and standard deviation are calculated, as needed or as required. 5.4 Microindentation hardness testing is generally performed to quantify variations in hardness that occur over small distances. To determine these differences requires a very small physical indentation. Testers that create indents at very low test forces must be carefully constructed to accurately apply the test forces exactly at the desired location and must have a high-quality optical system to precisely measure the diagonal (or diagonals) of the small indents. Test forces in the upper range of the force range defined in 1.2 may be used to evaluate bulk hardness. In general, the Vickers indenter is better suited for determining bulk (average) properties as Vickers hardness is not altered by the choice of the test force, from 25 gf to 1000 gf, because the indent geometry is constant as a function of indent depth. The Knoop indentation, however, is not geometrically identical as a function of depth and there will be variations in Knoop hardness, particularly at test forces <200 gf, over the force range defined in 1.2 (and above this range); consequently, Knoop hardness is not normally used to define bulk hardness, except at 500 gf where E140 gives conversions to other test scales, and Knoop tests should not be performed at test forces above 1000 gf. The majority of Knoop tests of case hardness variations are conducted at forces from 100 gf to 500 gf. If the test is being conducted to meet a specified bulk hardness value, such as HRC, then most such tests will be conducted with Knoop at a 500 gf load. Because of the large difference between the long and short Knoop diagonals, the Knoop indenter is often better suited for determining variations of hardness over very small distances compared to the Vickers indenter. Vickers and Knoop tests at forces ≤ 25 gf are susceptible to imprecision due to the difficulty in measuring extremely small indents (<20 µm) by light microscopy with high precision and reproducibility. Tests made at forces ≤ 25 gf should be considered to be qualitative in nature. Likewise, test forces that create indents <20 µm in length should be avoided whenever possible and should be considered to be qualitative in nature. The success of the specimen preparation procedure in removing preparation-induced damage can, and will, influence test results; this problem becomes more critical as the test force decreases.
分类信息
关联关系
研制信息
归口单位: E04.05
相似标准/计划/法规
现行
ASTM B933-20
Standard Test Method for Microindentation Hardness of Powder Metallurgy (PM) Materials
粉末冶金(PM)材料的微压痕硬度的标准测试方法
2020-10-01
现行
ASTM B578-21
Standard Test Method for Microindentation Hardness of Electroplated Coatings
电镀涂层显微压痕硬度的标准试验方法
2021-10-01
现行
ASTM B934-21
Standard Test Method for Effective Case Depth of Ferrous Powder Metallurgy (PM) Parts Using Microindentation Hardness Measurements
用显微压痕硬度测量法测定黑色粉末冶金(PM)零件有效层深度的标准试验方法
2021-04-01
现行
ASTM E92-23
Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials
金属材料维氏硬度和努氏硬度的标准试验方法
2023-07-01
现行
AASHTO T 80-08
Standard Method of Test for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials
金属材料洛氏硬度和洛氏表面硬度的标准试验方法
2008-08-01
现行
ASTM A833-19
Standard Test Method for Indentation Hardness of Metallic Materials by Comparison Hardness Testers
用比较硬度计测定金属材料压痕硬度的标准试验方法
2019-11-01
现行
YB/T 4285-2012
采用便携式硬度计测试金属压痕硬度的试验方法
Standard test method for indentation hardness of metallic materials by portable hardness testers
2012-11-07
现行
AASHTO T 70-08
Standard Method of Test for Brinell Hardness of Metallic Materials
金属材料布氏硬度的标准试验方法
2008-08-01
现行
ASTM E10-23
Standard Test Method for Brinell Hardness of Metallic Materials
金属材料布氏硬度的标准试验方法
2023-07-01
现行
ASTM B277-18(2024)
Standard Test Method for Hardness of Electrical Contact Materials
电接触材料硬度的标准试验方法
2024-04-01
现行
ASTM E18-24
Standard Test Methods for Rockwell Hardness of Metallic Materials
金属材料洛氏硬度的标准试验方法
2024-04-01
现行
ASTM C748-20
Standard Test Method for Rockwell Hardness of Graphite Materials
石墨材料洛氏硬度标准试验方法
2020-05-01
现行
ASTM E110-14(2023)
Standard Test Method for Rockwell and Brinell Hardness of Metallic Materials by Portable Hardness Testers
用便携式硬度计测定金属材料洛氏硬度和布氏硬度的标准试验方法
2023-01-01
现行
ASTM C886-21
Standard Test Method for Scleroscope Hardness Testing of Carbon and Graphite Materials
碳和石墨材料的硬化硬度试验的标准试验方法
2021-10-01
现行
ASTM G171-24
Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus
用金刚石触针测定材料划痕硬度的标准试验方法
2024-06-01
现行
ASTM D785-23
Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials
塑料和电绝缘材料洛氏硬度的标准试验方法
2023-03-15
现行
ASTM E3246-22
Standard Test Methods for Differential Indentation Depth Hardness of Metallic Materials
金属材料不同压痕深度硬度的标准试验方法
2022-04-01
现行
KS B 0805(2020 Confirm)
금속 재료의 브리넬 경도 시험 방법
金属材料布氏硬度试验方法
2000-09-19
现行
KS B 0806(2020 Confirm)
금속 재료의 로크웰 경도 시험 방법
金属材料洛氏硬度试验方法
2000-09-19
现行
KS B 0805(2020 Confirm)
금속 재료의 브리넬 경도 시험 방법
金属材料.布氏硬度试验方法
2000-09-19